首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. R. Molteno  T. H. Becker 《Strain》2015,51(6):492-503
This paper presents the implementation of the decomposition method on digital image correlation (DIC) obtained displacement fields to obtain J‐integral results (J) and respective stress intensity factors (SIFs). DIC is increasingly used with the J‐integral approach in experimental mechanics to obtain J estimates from complex fracture processes. In this approach, the decomposition method is applied to DIC displacement fields for the first time. Here, displacement fields are separated before stresses and strains are computed, so that subsequent computation of separate J or SIF components may follow the classical full‐field J‐integral approach. The sensitivity of the decomposition method to experimental errors is investigated using synthetically generated errors imposed on crack tip displacement fields (Williams' series), from which improvements to the procedure are proposed. The method is experimentally tested on PMMA Arcan specimens under mode I, II, and III, and mixed‐mode I–III loading. Test results were compared to fracture toughness values obtained from ASTM tests and literature with close agreement.  相似文献   

2.
Analyses of I–II mixed mode central cracked plate by finite element method are performed in this paper, and some different phenomena are found. First for I–II mixed mode crack, the distribution of J integral along crack tip thickness depends on biaxiality factors because of the existence of vertex (corner) singularity, which is unlike that for mode I or mode II crack. Then J integrals at middle layer keep constant for any cracked plates with different inclined angles β when the biaxiality ratio is equal to 1 or ?1, which implies that the inclined angle or the extent of I–II mixed mode has no effect on the J integral for positive or negative equal axial loading conditions. And the decreasing trend of J integral with the inclined angle β for biaxiality ratio λ being between?1 and 1 is just opposite with that for biaxiality ratio λ being larger than 1 and smaller than ?1. Finally, proposed h1 (a/W, n, λ, β) of cracked plate with different inclined angles under different biaxial loading are calculated.  相似文献   

3.
This paper proposes a hybrid approach to determine the fracture resistance for mode I and mixed‐mode I and II fracture specimens, combining both numerically computed and experimentally measured load (P) versus load‐line displacement (LLD or Δ) relationships for metallic fracture specimens. The hybrid approach predicates on the same principle as the conventional, multiple‐specimen experimental method in determining the energy release rate. The hybrid method computes the P–Δ curves from multiple finite element (FE) models, each with a different crack depth. The experimental procedure measures the P–Δ curve from a standard fracture specimen with a growing crack. The intersections between the experimental P–Δ curve and the numerical P–Δ curves from multiple FE models dictate the LLD levels to compute the strain energy (U) using the area under the numerical P–Δ curves. This method provides accurate estimates of the J resistance data for both SE(B) specimen under mode I loading and single‐edge notched specimens under mixed‐mode I and II loading.  相似文献   

4.
Abstract

By defining the J integral and crack opening displacement (COD) under mixed mode I + II loading, a mixed J integral fracture criterion is proposed and the relationship between the J integral and COD in 40CrNiMo steel is discussed. The mixed J integral J M and its mode I and II components J I and J II were calculated by the finite element method, while the mixed COD and its mode I and II components CTOD and CTSD were measured using a duplicated grid. The critical values J Mc and CODc for mixed crack initiation were determined by a resistance curve. The results show that mode II loading lowers both J Mc and CODc for 40CrNiMo steel. The variation of J Mcfrommode I tomode II loading is found to be in accordance with the linked equations J Mc=J Ii+J IIi;(J Ii/J Ic)+(J IIi/J IIc)=1, where J Icand J IIcare the critical J integrals of pure mode I and II cracks,and J Iiand J IIiare the mode I and II components of J Mc at arbitrary mixed KI/KII ratio respectively; the J Mc value for a given KI/KII ratio can be obtained if J Ic and J IIc are known. Finally, under valid loads, JM and the mixed COD satisfy the relation J M=J I+J II=dσ0CTOD+d sτ0CTSD. When unified by yield stress σy the relation becomes J M=dσyCOD, where d n, d s and d are coefficients, and σ0 and τ0 are the tensile and shear stress at the crack tip strip respectively. While d n and d s vary with KI/KII ratio and materials, d was found to have a constant value of about 0.98.  相似文献   

5.
Abstract

Micromechanisms producing ductile and brittle damage operate in parallel at a crack tip. The dominant mode of failure depends upon which of the two (ductile or brittle) damage parameters first reaches its critical value. This has been shown by a study of ductile–brittle transition behaviour in HY100 steel under mixed mode I and II loading. The transition from ductile to brittle behaviour in HY100 steel was found to be affected by mixed mode I and II ratio (ratio of imposed tensile and shear loading) in a manner such that with increasing shear the transition temperature decreased. In the present paper, a criterion is proposed based on the shear strain ahead of a notch tip, to predict the fracture behaviour at any given temperature and mixed mode ratio.  相似文献   

6.
In this paper, the influence of T‐stress on crack‐tip plastic zones under mixed‐mode I and II loading conditions is examined. The crack‐tip stress field is defined in terms of the mixed‐mode stress intensity factors and the T‐stress using William's series expansion. The crack‐tip stress field is incorporated into the Von Mises yield criteria to develop an expression that determines the crack‐tip plastic zone. Using the resultant expression, the plastic zone is plotted for various combinations of mode II to mode I stress intensity factor ratios and levels of T‐stress. The properties of the plastic zone affected by T‐stress and mixed‐mode phase angle are discussed. The observations obtained on plastic zones variations are important for further fatigue and fracture analyses for defects in engineering structures under mixed‐mode loading conditions.  相似文献   

7.
Interlaminar fracture characterization for plain weave fabric composites   总被引:2,自引:0,他引:2  
For the analysis of laminated composite plates under transverse loading and drilling of composites, all the elastic, strength and fracture properties of the composite plates are essential. Interlaminar critical strain energy release rate properties in mode I, mode II, mixed mode I/II and mode III have been evaluated for two types of plain weave fabric E-glass/epoxy laminates. The double cantilever beam test and the end notch flexure test have been used for mode I and mode II loading. The mixed mode bending test and split cantilever beam test have been used for mixed mode I/II and mode III loading. It is observed that the plain weave fabric composite with lesser strand width has higher interlaminar fracture properties compared to the plain weave fabric composite with more strand width. Further, crack length versus crack growth resistance plots have been presented for mode III loading. In general, it is observed that total fracture resistance is significantly higher than the critical strain energy release rate.  相似文献   

8.
This paper is directed towards finite element computation of fracture parameters in functionally graded material (FGM) assemblages of arbitrary geometry with stationary cracks. Graded finite elements are developed where the elastic moduli are smooth functions of spatial co‐ordinates which are integrated into the element stiffness matrix. In particular, stress intensity factors for mode I and mixed‐mode two‐dimensional problems are evaluated and compared through three different approaches tailored for FGMs: path‐independent J*k‐integral, modified crack‐closure integral method, and displacement correlation technique. The accuracy of these methods is discussed based on comparison with available theoretical, experimental or numerical solutions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, SiO2f/SiO2 composites reinforced by 3D four‐directional braided quartz preform were prepared by the silica sol‐infiltration‐sintering method in a relatively low sintering temperature (450 °C). To characterize the mechanical properties of the composites, mechanical testing was carried out under various loading conditions, including tensile, flexural and shear loading. The microstructure and the fracture behaviour of the 3D four‐directional braided SiO2f/SiO2 composites were studied. The tensile strength, flexural strength and the in‐plane shear strength were 30.8 MPa, 64.0 MPa and 22.0 MPa, respectively. The as‐fabricated composite exhibited highly nonlinear stress–strain behaviour under all the three types of loading. The tensile and flexural fracture mechanisms were fully discussed. The fracture mode of the 3D four‐directional braided SiO2f/SiO2 composite in the Iosipescu shear testing was based on a mixed mechanism because of the multi‐directivity of the composite. Owing to low sintered temperature, the fibre/matrix interfacial strength was weak. The SiO2f/SiO2 composites showed non‐catastrophic behaviour resulting from extensive fibre pull‐out during the failure process.  相似文献   

10.
Abstract

ensile, three point bend J c, and Charpy V-notch impact tests were carried out at various loading speeds and temperatures on ferritic, pearlitic–ferritic, and pearlitic spheroidal graphite cast irons. The 0·2% proof stress increased monotonically with decreasing temperature. Similar behaviour was observed for tensile strength, but the temperature range over which it occurred was limited. Both 0·2% proof stress and tensile strength were increased slightly by increasing the crosshead speed. The energy for fracture per unit volume in tensile tests was evaluated as the mean of the tensile strength plus proof stress multiplied by elongation. This energy reveals the ductile–brittle transition behaviour in the same manner as J c value or Charpy impact energy. An increase of loading speed shifted the transition curve of the energy for fracture to higher temperature, leaving the upper shelf value unchanged. An increase of pearlite volume fraction in the matrix also shifted the curves to higher temperature, decreased the upper shelf value, and reduced the slope of the transition curve. The transition temperatures of the energy for fractureJ c value, and Charpy impact energy were found to be linearly related to the logarithm of strain rate.

MST/1343  相似文献   

11.
Double cantilever beam (DCB) specimens of 2.5‐mm‐long SAC305 solder joints were prepared with thickness of copper adherends varying from 8 to 21 mm each. The specimens were tested under mode I loading conditions (ie, pure opening mode with no shear component of loading) with a strain rate of 0.03 second?1. The measured fracture load was used to calculate the critical strain energy release rate for crack initiation, Jci, in each case. Fracture behaviour showed a significant dependence on the adherend thickness; the Jci and plastic deformation of the solder at crack initiation decreased significantly with increase in adherend thickness. This behaviour was attributed to changes in stress distribution along the solder layer when the adherend thickness was varied. The capability of Jci as a property was then assessed to predict the fracture load of solder joints in specimens with different constraint levels caused by variations in adherend thicknesses. In light of the results obtained, a cohesive zone model (CZM) was developed to predict the fracture load of solder joints as a function of adherend thickness. Finally, a CZM with a single set of parameters was established to predict the fracture loads for all the cases. It was concluded that CZM was a better methodology to account for changes in degree of joint constraint imposed by bonding adherends.  相似文献   

12.
Mixed‐mode dynamic fracture behaviour of cast aluminium alloy ZL205A thin plates with narrow U‐notch was studied by split Hopkinson tensile bar apparatus. Specimens with different loading angles were designed to realize different fracture modes. The same loading condition was maintained during the tests. Recovery specimens show that crack propagates along the notch direction. Force–elongation relations show that with the loading angle increasing, the fracture force increases while the final elongation decreases. Deformation and fracture process was observed by a high‐speed camera. Displacement distribution around the crack was calculated through digital image correlation technique. Based on the photos and displacement results, initiation time of the crack was derived. Besides, two stress components (normal stress and shear stress) applied on the fracture surface were investigated. Results show that crack initiation stresses at different loading angles satisfy the ellipse equation. Pure mode I and II fracture stresses are 425.3 and 236.7 MPa, respectively. Furthermore, specific fracture energy of different specimens was calculated. The energy data vary with loading angle and located on an approximate upward parabolic curve. From the curve, the minimum specific fracture energy of the thin plate specimen is 42.0 kJ/m2 under loading angle of 76.3°.  相似文献   

13.
Four‐point bend experiments on black granite are conducted. The fracture behaviours of granite under pure mode I, pure mode II and I–II mixed mode are investigated, and the corresponding stress intensity factors KI , KII and the non‐singular term T‐stress are obtained through numerical–experimental method. The results are compared with the theoretical predictions of generalized maximum tangential stress criterion and other conventional criteria. It shows that generalized maximum tangential stress criterion fits the experimental results better for considering the effect of T‐stress. Contrasting with other loading configurations, the values of T‐stress for asymmetric four‐point bend specimens are much smaller, especially for pure mode II specimens, which provide an asymmetric deformation field where the T‐stress is approaching zero.  相似文献   

14.
Residual stresses due to manufacturing processes, such as welding, change the load bearing capacity of cracked components. The effects of residual stresses on crack behaviour in single edge bending specimens were investigated using Finite element analyses. Three parameters (J, Q and R) were used to study the crack behaviour. The J‐integral predicts the size scale over which large stresses and strains exist, the constraint parameter Q describes the crack‐tip constraint as a result of geometry, loading mode and crack depth and the constraint parameter R is used to describe the constraint resulting from residual stresses. To carry out a systematic investigation on the effect of residual stresses on the J‐integral and crack‐tip constraints, models under different combinations of residual stresses and external loads with different crack depths were analysed. It has been shown that the crack‐tip constraint R increased by tensile residual stresses around the crack‐tip. On the other hand, the constraint parameter R decreased and tended to zero at high external load levels.  相似文献   

15.
Interlaminar fracture is the dominant failure mechanism in most advanced composite materials. The delaminating behaviour of materials is quantified in terms of the strain energy release rate G. In this paper, the experimental measurements of the fatigue delaminating growth for some combinations of energy release rate mode ratio have been carried out on unidirectional glass/epoxy laminates. On this base the constants in the Paris equation have been determined for each GII/GT considered modal ratio. The fatigue threshold strain energy release rate Δ GTth , below which delaminating doesn't occur, were measured. Three type specimens were tested, namely: double cantilever beam (DCB), end‐loaded split (ELS) and mixed‐mode bending (MMB) under mode I, mode II and mixed‐mode (I + II) loading, respectively. Scanning electron microscopy techniques were used to identify the fatigue delamination growth mechanisms and to define the differences between the various modes of fracture.  相似文献   

16.
The simplified analytical approaches based on beam or plates theories are commonly used to solve the stress field in bonded laminates. However, to be correctly applied, these methods require an appropriate fracture criterion. In this paper, the use of J-integral as a fracture parameter in these simplified analytical approaches is discussed. After examining its path independence, the J-integral is calculated along two particular paths showing first that this integral is equal to the product of the strain energy at the end of the joint (i.e. at the debond tip) by its thickness. This relationship reveals the partitioning of the opening mode I and the shearing mode II. Secondly, the general expression of J as a function of the loading conditions is derived. It is shown that this parameter can be related to the strain energy release rate in the cases of small scale yielding conditions and for usual fracture mechanics specimens.  相似文献   

17.
Finite element method is used to analyze a rail with a vertical bottom up crack at its foot, under the axle load and surface traction of a wheel. The possibility of crack formation at the foot of the rail in the neighborhood of a welding connection is discussed. A brief review on the importance of T‐stress in brittle fracture is presented. Seven cases with different locations of the crack relative to rail's sleeper contact region are considered. Numerous positions of the wheel are considered, and in each case, 3 crack parameters KI, KII, and T‐stress are calculated. Then, the biaxiality ratio and the mixity parameter for each loading and crack condition are calculated. It is shown that the location of crack and wheel can create mixed mode loading in the cracked rail and that the magnitude of crack tip parameters are strongly dependent on these geometric variables. In particular, the magnitudes of T‐stress and biaxiality ratio are significant in some cases. The effect of friction between the crack faces in the presence of compressive mode I loading on the mode II stress intensity factor is studied. Under mixed mode loading, due to the axle load and surface traction, the most critical condition is the formation of vertical cracks near the sleeper contact region.  相似文献   

18.
This paper presents an enriched meshless method for fracture analysis of cracks in homogeneous, isotropic, non‐linear‐elastic, two‐dimensional solids, subject to mode‐I loading conditions. The method involves an element‐free Galerkin formulation and two new enriched basis functions (Types I and II) to capture the Hutchinson–Rice–Rosengren singularity field in non‐linear fracture mechanics. The Type I enriched basis function can be viewed as a generalized enriched basis function, which degenerates to the linear‐elastic basis function when the material hardening exponent is unity. The Type II enriched basis function entails further improvements of the Type I basis function by adding trigonometric functions. Four numerical examples are presented to illustrate the proposed method. The boundary layer analysis indicates that the crack‐tip field predicted by using the proposed basis functions matches with the theoretical solution very well in the whole region considered, whether for the near‐tip asymptotic field or for the far‐tip elastic field. Numerical analyses of standard fracture specimens by the proposed meshless method also yield accurate estimates of the J‐integral for the applied load intensities and material properties considered. Also, the crack‐mouth opening displacement evaluated by the proposed meshless method is in good agreement with finite element results. Furthermore, the meshless results show excellent agreement with the experimental measurements, indicating that the new basis functions are also capable of capturing elastic–plastic deformations at a stress concentration effectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The paper presents the results of an experimental and numerical study on the fatigue behaviour of cruciform load carrying joints made from the duplex stainless steel and failing from the weld root through the weld metal. Fatigue crack growth (FCG) data, obtained in specimens of the weld metal, are presented, as well as threshold data, both obtained for R= 0 and 0.5. The influence of stress ratio is discussed, and the FCGR results are compared with data for low carbon structural steels. S–N data were obtained in the joints, both for R= 0.05 and 0.5, and the fatigue cracking mechanisms were analysed in detail with the SEM. It was found that the cracks propagated very early in the lifetime of the joints, under mixed mode conditions (I + II), but the mode I component was found to be predominant over mode II. The geometries of the cracks were defined in detail from measurements taken in the fracture surfaces. A 2D FE analysis was carried out for the mixed mode inclined cracks obtained at the weld root, and the J‐integral formulations were obtained as a function of crack length and crack propagation angle. The values of the crack propagation angle, θi, were obtained for the Jmax conditions, and it was found that, in the fatigue tests, the cracks propagated in directions very close to the predicted directions of maximum J. KI and KII formulations were obtained, and the KI data were compared with the formulations given in the PD6493 (BS7910) document, and some differences were found. A more general formulation for K under mixed mode conditions was derived. The derived K solutions were applied to predict the fatigue lives of the joints under crack propagation, and an extremely good agreement was found with the experimental results obtained in the fatigue tests.  相似文献   

20.
It has been well‐established that the non‐singular T‐stress provides a first‐order estimate of geometry and loading mode (e.g. tension versus bending) effects on elastic–plastic crack‐front field under mode I loading conditions. The objective of this paper is to exam the T‐stress effect on three‐dimensional (3D) crack‐front fields under mixed‐mode (modes I and II) loading. To this end, detailed 3D small strain, elastic–plastic simulations are carried out using a 3D boundary layer (small‐scale yielding) formulation. Characteristics of near crack‐front fields are investigated for a wide range of T‐stresses (T/σ0 = ?0.8, ?0.4, 0.0, 0.4, 0.8). The plastic zones and thickness and angular and radial variations of the stresses are studied, corresponding to two values of the remote elastic mixity parameters Me = 0.3 and 0.7, under both low and high levels of applied loads. It is found that different T‐stresses have a significant effect on the plastic zones size and shapes, regardless of the mode mixity and load level. The thickness, angular and radial distributions of stresses are also affected markedly by T‐stress. It is important to include these effects when investigating the mixed‐mode ductile fracture failure process in thin‐walled structural components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号