首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents experimental and numerical investigations of the fatigue crack initiation and growth mechanism in metal-to-composite bonded double-lap joints. Fatigue tests were conducted under tension dominated loading, with crack lengths being measured optically. Examination of the fracture surface using scanning electron microscope revealed that fatigue cracks were near the interface between the co-cured adhesive and the first ply of the composite adherend. The finite element method has been used to determine the strain-energy release rate of a fatigue crack growing along the first ply of the composite. The effects of spew fillet size and crack initiation modes have also been studied by the finite element method. Comparison of the present experimental crack growth results with those measured using double-overlap joints, where the fatigue cracks were driven by pure mode II loading, indicate that the tensile mode loading has a overwhelming effect on the fatigue crack growth rates. The present results suggest that fatigue failure of metal-composite double-lap joints is mainly driven by tensile mode loading due to the peel stress.  相似文献   

2.
《Composites Part A》2004,35(10):1175-1183
Double cantilever beam joints were used to investigate cohesive and interlaminar crack growth in bonded composite joints under constant and variable amplitude (VA) loading. Numerical crack growth integration was used to predict the VA fatigue life using constant amplitude data. This underestimated the fatigue crack growth rate for interlaminar cracks, indicating crack growth acceleration due to load interactions. This was also the case for cohesive cracks subjected to a moderate initial strain energy release rate (Gmax). An unstable crack growth regime was also identified for the case of high initial Gmax cohesive crack propagation. This behaviour is attributed to the development of a damage zone ahead of the crack tip.  相似文献   

3.
The fatigue de-bond growth studies have been conducted on adhesively bonded lap joint specimens between aluminium and aluminium with Redux-319A adhesive with a pre-defined crack of 3 mm at the bond end. The correlations between fracture parameters and the de-bond growth data are established using both numerical and experimental techniques. In the numerical method, geometrically non-linear finite element analyses were carried out on adhesively bonded joint specimen for various de-bond lengths measured from the lap end along the mid-bond line of the adhesive. The finite element results were post processed to estimate the SERR components G I and G II using the Modified Virtual Crack Closure Integral (MVCCI) procedure. In experimental work, specimens were fabricated and fatigue de-bond growth tests were conducted at a stress ratio R = − 1. The results obtained from both numerical analyses and testing have been used to generate de-bond growth curve and establish de-bond growth law in the Paris regime for such joints. The de-bond growth rate is primarily function of mode-I SERR component G I since the rate of growth in shear mode is relatively small. The value of Paris exponent m is found to be 6.55. The high value of de-bond growth exponent in Paris regime is expected, since the adhesive is less ductile than conventional metallic materials. This study is important for estimating the life of adhesively bonded joints under both constant and variable amplitude fatigue loads.  相似文献   

4.
The present paper is concerned with a phenomenological model to perform the failure analysis of composite adhesive single lap joints with arbitrary glued area. The theory is conceived for joints composed by highly resistant elastic adherends bonded with brittle–elastic adhesives. It is shown that, under certain conditions, the rupture forces (in the case of monotonic loading) and lifetimes (in the case of cyclic loading) of two joints with different glued areas can be correlated using a shape factor. Results from experimental static and fatigue testing of joints with carbon/epoxy laminates bonded with epoxy adhesive and different bonding areas are compared with model prediction showing a good agreement.  相似文献   

5.
The strains at which buckling and debond growth occur in adhesively bonded composite flanges containing an initial debond were experimentally measured. Test parameters including initial debond geometry, flange material stiffness, and the adhesive critical strain energy release rate (Gc) were investigated. Debond growth was found to be strongly dependent on initial debond length but weakly dependent on flange width; i.e., debonding resistance did not increase in direct proportion with the bonded overlap dimension. Flanges having higher bending stiffness exhibited significantly lower debonding strain. Finally, the effect of Gc was evaluated at three levels by controlling the adhesive cure temperature and bondline thickness. Lower values of Gc (207 and 552 J/m2) allowed debond growth to occur while at the highest value of Gc (1500 J/m2), alternate failure modes occurred prior to debond growth. Ultrasonic C-scans revealed that debond growth occurred along a curved front, as dictated by the post-buckling deformation of the flanges.  相似文献   

6.
A geometrical non-linear numerical analysis for two-dimensional models of adhesively bonded composite panel-flange joints is presented to investigate the peel and shear stress redistribution in the joints when the panels buckle. The maximum stress failure criterion is used to predict failure loads and the associated failure modes induced by the buckled panels. Parametric studies for a variety of geometric configurations are carried out to show the effect of the relative stiffness and length ratios of the panel and flange on the redistribution of the peel and shear stresses as well as the failure loads and the associated modes. It is also shown that flexible joints provide higher joint efficiency.  相似文献   

7.
The mean load of a cyclic loading has a large effect on fatigue crack growth rates in metallic materials and bonded joints. In metallic structures, this effect has been attributed to plasticity-induced crack closure, but little is known about the mechanism responsible for this mean load effect on fatigue crack growth in adhesively bonded joints. This paper presents a computational investigation of the plasticity-induced crack closure mechanism affecting disbond growth in adhesively bonded joints under fatigue loading. The results show that the ratios of crack-opening and crack-closure are approximately independent of the level of plastic constraint, indicated by the ratio between the plastic zone size and the adhesive thickness. An effective strain-energy release rate parameter, which accounts for the crack closure behaviour, has been developed as a new correlating parameter for disbond growth. Comparisons with the experimental results pertinent to four different adhesive bonded joints reveal that this new correlating parameter is capable of unifying the fatigue growth rates by eliminating the effect of mean loads.  相似文献   

8.
9.
针对在航空结构中广泛应用的复合材料蜂窝夹芯圆管中的接头这一最脆弱的部分,发展了一种分析复合材料蜂窝夹芯圆管胶粘接头力学特性的解析模型.该模型根据Gibson修正公式得到了蜂窝芯子的等效弹性参数,再运用经典的复合材料壳理论和线弹性理论得到管接头的控制方程,并通过状态空间法进行求解.运用本文模型,计算了管接头在扭矩和弯矩作用下胶层内的剪应力和剥离应力;同时采用有限元法对模型进行了数值模拟,并将模拟结果与模型计算结果进行了对比,最后分析了搭接长度对胶层内应力的影响.  相似文献   

10.
11.
Carbon fibre reinforced polymers (CFRPs) are now well established in many high-performance applications and look set to see increased usage in the future, especially if lower cost manufacturing and solutions to certain technical issues, such as poor out-of-plane strength, can be achieved. A significant question when manufacturing with CFRP is the best joining technique to use, with adhesive bonding and mechanical fastening currently the two most popular methods. It is a common view that mechanical fastening is preferred for thicker sections and adhesive bonding for thinner ones; however, advances in the technology and better understanding of ways to design joints have lead to increasing consideration of adhesive bonding for traditionally mechanically fastened joints. In high-performance applications fatigue loading is likely and in some cases repetitive low-energy impacts, or impact fatigue, can appear in the load spectrum. This article looks at mixed-mode crack growth in epoxy bonded CFRP joints in standard and impact fatigue. It is shown that the back-face strain technique can be used to monitor cracking in lap-strap joints (LSJs) and piezo strain gauges can be used to measure the strain response of impacted samples. It is seen that there is significant variation in the failure modes seen in the samples and that the crack propagation rate is highly dependent on the fracture mode. Furthermore, it is found that the crack propagation rate is higher in impact fatigue than in standard fatigue even when the maximum load is significantly lower.  相似文献   

12.
Fatigue crack growth tests were conducted on double cantilever beam bonded specimens with the aim to characterize an adhesive for structural applications. The tests were conducted in lab air at two different load ratios, R=Pmin/Pmax, and at two different loading frequencies, f. Crack propagation was monitored using the unloading compliance method. The da/dN vs. ΔG experimental showed the typical sigmoidal shape of bulk materials. Crack closure considerations were successfully used to explain the R-ratio effect. The role of loading frequency was also addressed.  相似文献   

13.
The main objective of the present work is to improve the performance of bonded joints in carbon fiber composite structures through introducing Multi-Walled Carbon Nanotubes (MWCNTs) into Epocast 50-A1/946 epoxy, which was primarily developed for joining and repairing of composite aircraft structures. Results from tension characterizations of structural adhesive joints (SAJs) with different scarf angles (5–45°) showed improvement up to 40% compared to neat epoxy (NE)–SAJs. Special attention was considered to investigate the performance of SAJs with 5° scarf angle under different environments. The tensile strength and stiffness of both NE-SAJs and MWCNT/E-SAJs were dramatically decreased at elevated temperature. Water absorption showed a marginal drop of about 2.0% in the tensile strength of the moist SAJs compared to the dry one. Cracks initiation and propagation were detected effectively using instrumented-SAJs with eight strain gauges. The experimental results agree well with the predicted using three-dimensional finite element analysis model.  相似文献   

14.
Mode I fracture behaviour of adhesively bonded double and cantilever beam (DCB) compact tension (CT) joints was studied using a rubber-modified epoxy (Araldite® GY260) as the adhesive. Adherends were prepared from a carbon fibre (CF)/epoxy composite or aluminium alloys. The crack path in the joints was studied based on the sign of the non-singularT-stress ahead of the crack tip by calculating the thermal residual stress in the joints using finite element analysis. The results indicate that the type of adherend materials influence the level of the thermal residual stress in the adhesive layer, which consequently causes different crack paths in the joints, i.e. a uniformly smooth fracture surface in both CT and DCB aluminium joints and a wavy crack growth in the DCB CF/epoxy composite joints. However, the fracture energies of different types of adhesive joints were almost identical to each other for bond thicknesst<0.2 mm, and a somewhat higher fracture resistance was obtained for the CF/epoxy DCB joints with large bond thickness.  相似文献   

15.
This paper examines the effects of delamination damage in composite to metal joints. Experiments on debonded double lap joints of graphite/epoxy to aluminium were conducted. Various debonded lengths were considered. Finite element analysis was also carried out in order to study the effect of debond length on various lap joints. The experimental and analytical results were found to be in good agreement. It is also shown that as the size of the damage is increased a stage is reached after which a significant further increase in damage does not result in a significant decrease in residual compressive strength.  相似文献   

16.
A cohesive zone model (CZM) has been used in conjunction with both elastic and elasto– plastic continuum behaviour to predict the response of a mixed mode flexure and three different lap shear joints, all manufactured with the same adhesive. It was found that, for a specific dissipated CZM energy (Γ0) there was a range of CZM tripping tractions (σu) that gave a fairly constant failure load. A value of σu below this range gave rise to global damage throughout the bonded region before any crack propagation initiated. A value above this range gave rise to a discontinuous process zone, which resulted in failure loads that were strongly dependent on σu. A discontinuous process zone gives rise to mesh dependent results. The CZM parameters used in the predictions were determined from the experimental fracture mechanics specimen test data. When damage initiated, a deviation from the linear load–displacement curve was observed. The value for σ uwas determined by identifying the magnitude that gave rise to the experimentally observed deviation. The CZM energy (Γ 0) was then obtained by correlating the simulated load-crack length response with corresponding experimental data. The R-curve behaviour seen with increasing crack length was successfully simulated when adhesive plasticity was included in the constitutive model of the adhesive layer. This was also seen to enhance the prediction of the lap shear specimens. Excellent correlation was found between the experimental and predicted joint strengths.  相似文献   

17.
An experimental investigation was performed to analyze the potential impacts of varying joint region geometries and adhesive filled pin holes on adhesively bonded composite structures. Tapers, especially half-length ones are observed to provide an anticipated progress in single lap joints. Besides, scarf joints with aligned adherends in the same plane exhibited enhanced stiffness and strength in consideration of single lap joints. In terms of the stiffness and strength, thickening of adherends was also found to be impressively efficient on composite single lap joints as well as scarf joints. Contrary to the expectation of that the hardened adhesive previously filled into the holes during adhesion would create a pin effect in load bearing, holey specimens exhibited poor performance and induced degradation in joint quality.  相似文献   

18.
Analytical solutions for adhesively bonded balanced composite and metallic joints are presented in this paper. The classical laminate plate theory and adhesive interface constitutive model are employed for this deduction. Both theoretical and numerical (finite element analysis) studies of the balanced joints are conducted to reveal the adhesive peel and shear stresses. The methodology can be extended to the application of various joint configurations, such as single-lap and single-strap joints to name a few. The methodology was used to evaluate stresses in several balanced adhesively bonded metallic and composite joints subjected to the tensile, moment and transverse shear loadings. The results showed good agreements with those obtained through FEM.  相似文献   

19.
《Composites Part B》2003,34(5):417-427
It is well known that geometric nonlinear effects have to be taken into account when the ultimate strength of single lap composite joints are studied. In the present paper we investigate for which level of loads or prescribed end displacements nonlinear effects become significant and how they appear. These aspects are studied by comparing finite element results obtained from geometric nonlinear models with the results from the linear ones. The well-known software package ANSYS is applied in the numerical analysis together with a self-implemented module in the C++ library Diffpack. Some of the results are also compared with classical analytical theories of idealized joints showing significant differences.The joints examined are made of cross-ply laminates having 0 or 90° surface layers. A combined cross-ply/steel joint and an isotropic joint made of steel are also studied. All the models except the all-steel one are assembled with adhesives, while the latter is welded.Through the investigation a considerable departure from linear behavior has been detected for a large regime of prescribed end displacements or external loads. Geometric nonlinear effects begin to develop for external loads that produces stresses which are far below ultimate strength limits and for average longitudinal strains that are less than 0.5%. It has also been detected that the distribution of materials within the joint has some influence on the nonlinear behavior. Thus, geometric nonlinear methods should always be applied when single lap (or other non-symmetric) composite joints are analyzed.  相似文献   

20.
Fatigue crack growth behavior in a stiffened thin 2024-T3 aluminum panel repaired with one-sided adhesively bonded composite patch was investigated through experiments and analyses. The patch had three plies of unidirectional boron/epoxy composite. 2024-T3 aluminum stiffeners were riveted as well as bonded on the panel. Stiffeners were oriented in the loading direction and were spaced at either 102 mm or 152 mm with a crack centered between them. Also, un-repaired cracked panel with and without stiffeners were studied. Experiment involved tension-tension fatigue at constant amplitude with maximum stress of 120 MPa and stress ratio of 0.05. Bonded composite patch repair increased fatigue life about five-fold in the case of stiffened panels while it increased about ten fold in the case of un-stiffened panels. Fatigue life also increased with decrease of the distance between the stiffeners for both repaired and un-repaired panels. A three-dimensional finite element method was used to analyze the experiments. Residual thermal stresses, developed during patch bonding, requires the knowledge of temperature at which adhesive becomes effective in creating a bond between the structure and patch in the analysis. A simple method to estimate the effective curing temperature range is suggested in this study. The computed stress intensity factor versus measured crack growth relationships for all panel configurations were consistent and in agreement with the counterpart from the test material. Thus, the present approach provides a means to analyze the fatigue crack growth behavior of stiffened structures repaired with adhesively bonded composite patch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号