首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metin Husem  Selim Pul 《Sadhana》2007,32(3):243-252
The effects of confinement reinforcement on the behaviour of high strength concrete columns are investigated for which prismatic experimental specimens were prepared. In the experiment specimens, four longitude reinforcement and confinement reinforcement were used. For each experiment, stress-strain relationship of concrete was obtained and compared with models proposed earlier. The results show that confinement reinforcement improved the ductility of high strength concrete. The ascending branch of stress-strain curves depended on the ratio of confinement reinforcement was similar to the modified Kent-Park model and the descending branch similar to the Nagashima model.  相似文献   

2.
Modelling complex concrete column–beam connection with hybrid fibre reinforced plastic (FRP) reinforcement properly requires understanding of the behaviour of such component and supporting from some experimental data for model updating and refinement. This paper, through a comprehensive experimental work, investigates the behaviour of reinforced concrete frame specimens designed to represent the column–beam connections in plane frames. As a follow-up to the previous reported work, it focuses on details of experimental analyses, in particular, a comprehensive strain analysis. Results of the analysis show that designed hybrid FRP reinforcement greatly improve the stiffness and load carrying capacity of its concrete counterpart. It also delays the crack initiation at the joint through confinement due to FRP reinforcement.  相似文献   

3.
The paper describes the results of tests on prototype size reinforced concrete frame specimens which were designed to represent the column–beam connections in plane frames. The tests were devised to investigate the influence of fibre reinforced plastic (FRP) reinforcement applied to external surfaces adjacent to the beam–column connection on the behaviour of the test specimens under static loading. Of particular interest under static loading was the influence of FRP reinforcement on the strength and stiffness of beam–column connection. As a key to the study, the hybrid FRP composites of E-glass woven roving (WR) and plain carbon cloth, combined with chopped strand mat (CSM), glass fiber tape (GFT) with a vinyl-ester resin were designed to externally reinforce the joint of the concrete frame. The results show that retrofitting critical sections of concrete frames with FRP reinforcement can provide signification strengthening and stiffening to concrete frames and improve their behaviour under different types of loading. The selections of types of FRP and the architecture of composites in order to improve the bonding and strength of the retro-fitting were also discussed.  相似文献   

4.
单波  赖大德  刘福财 《材料导报》2017,31(23):96-102
在活性粉末混凝土(RPC)预制管内部浇筑高强混凝土,形成RPC管-高强混凝土(HSC)组合柱,扩展了RPC管-混凝土组合柱(CFRT)这一新型组合结构的范围。开展了RPC管离心法成型的配合比与工艺研究,成功试制了RPC管。对4组大尺寸CFRT和1组箍筋约束高强混凝土柱试件进行轴压试验,试验参数为内部混凝土和纵筋配置率。结果表明:内部填充HSC的CFRT柱在整个受力过程中,预制管身基本完整,抗压性能显著优于用于对比的箍筋约束高强混凝土柱;CFRT柱的抗压强度随内部混凝土强度的提高而提高,但约束效应逐步降低,对CFRT柱的内部混凝土的强度应该有所限制;在内部混凝土中配置纵向钢筋,对CFRT的延性影响不大;基于Mander(1988)约束模型,提出了内部填充高强混凝土的CFRT柱轴向承载力计算方法,模型的预测结果与试验结果吻合较好。  相似文献   

5.
王琨  袁沈峰  智海祥  史高林  曹大富  陈再现 《工程力学》2016,33(10):197-207,217
基于两榀配置核心钢管的钢筋混凝土柱-钢骨混凝土梁组合框架试件在水平低周往复荷载作用下的试验结果,分别采用三维实体单元和纤维梁柱单元建立了试验框架数值模型,并开展力学性能和滞回全过程分析。考察了试验框架的破坏形态和内置钢骨架、钢筋骨架及预应力筋的应力状态。对组合框架开展滞回性能参数分析,考察了柱长细比、轴压比、梁柱内型钢截面抵抗矩和配筋率、柱内钢管的含钢率、钢管约束系数和径厚比、混凝土强度和预应力度的影响,并在大量参数分析的基础上建立了单层单跨组合框架的恢复力模型。结果表明:基于三维实体单元的数值模型可较为直观的反应试件的破坏形态;计算所得组合框架滞回曲线较为饱满,具有良好的耗能能力,当轴压比超过0.6以后,组合框架的位移延性才有所变小,变形能力变差;建立的滞回模型可对组合框架在水平荷载下的滞回性能进行可靠的预测。  相似文献   

6.
为研究节点区柱钢管非连续式钢管混凝土柱-梁节点的受剪性能,对5个柱-梁中节点试件进行低周反复荷载试验。对节点的破坏形态和骨架曲线进行分析,结果表明随着节点面积增大系数(节点面积/柱面积)和相对配筋系数(节点体积配筋率/梁配筋率)的增大,节点的受剪承载力和延性逐渐改善。基于修正斜压场(MCFT)的基本理论,并对节点的受力边界进行简化,建立该节点在剪、压复合作用下的抗剪承载力计算方法;采用该文的简化方法计算得到的节点峰值剪应力与试验结果进行对比,二者吻合良好。  相似文献   

7.
The results of experimental investigation of the local bond stress-slip response of steel bars embedded in confined concrete and subjected to cyclic loading are presented. Different types of confinement and their effect on the bond stress-slip response were evaluated and compared. These included internal confinement by ordinary transverse steel ties or steel fiber reinforcement, and external confinement by fiber reinforced polymer (FRP) composites. Beam specimens with spliced reinforcement at midspan were tested. The test parameters included the size of the steel bars, the ratio of concrete cover to bar diameter, and the amount of confinement. Without confinement, the specimens suffered significant bond deterioration and loss in load resistance in the first or second load cycle after bond splitting. Confining the concrete with transverse steel, steel fiber reinforcement or FRP composites within the splice region increased the bond strength and reduced the bond degradation with the number of loading cycles, leading to significant improvement in seismic performance. The envelope curve of the cyclic bond stress-slip response showed very good agreement with earlier test results obtained under static load conditions and the results predicted using an analytical model of the local bond stress-slip response of steel bars embedded in confined concrete.  相似文献   

8.
董春敏  周淼 《工程力学》2013,30(1):242-247
为避免矩形截面框架柱在斜向水平地震作用下发生脆性破坏,通过试验研究14根框架柱在斜向水平荷载作用下的受力性能和破坏机理。以桁架-拱模型为基础建立计算矩形截面框架柱斜向受剪承载力的空间桁架-拱模型,该模型主要考虑了框架柱截面面积、混凝土和箍筋材料强度、配箍率、轴压力以及混凝土强度折减系数对其斜向受剪承载力的影响。最后,利用该文以及其他试验共计30根矩形截面框架柱的斜向受剪承载力试验结果对此空间桁架-拱模型的可行性和适用性进行了验证,试验结果与计算值的对比表明利用该模型可以安全计算矩形截面框架柱斜向受剪承载力。  相似文献   

9.
This paper presents analytical part of an investigation on the application of prestressed strips for concrete confinement. In this paper, an analytical model is proposed to predict the compressive stress–strain curve of strapped concrete as a function of the confinement level. The model was calibrated based on the experimental data of compressive tests which were described in part A of this paper. Various parameters are considered in the proposed model including volumetric ratio, yield strength and ultimate strain of confining material, shape of cross section, strength of plain concrete. Three key points were defined on the stress–stress curve of strapped concrete columns and applied in model definition including critical, yield and ultimate points. The model showed good capability in predicting the compressive stress–strain curve of tested strapped concrete specimens. The model is also compared to some of the conventional confinement models in prediction of the strength gained by post-tensioned strips. In addition, a plasticity model was applied in the nonlinear finite element analysis of prismatic and cylindrical tested specimens with various levels of confinement. It is shown that these models are able to predict the experimental results, reasonably.  相似文献   

10.
A simple analytical model is presented to predict the ultimate punching shear strength of slab–column connections. The model is based on the physical behavior of the connections under load, and is therefore applicable to both lightweight and normal weight concrete. The model assumes that punching is a form of combined shearing and splitting, occurring without concrete crushing, but under complex three dimensional stresses. Failure is then assumed to occur when the tensile splitting strength of the concrete is exceeded. The theory is applied to predict the ultimate punching shear strength of 60 slab–column connections reported recently in literature, and designed to fail in shear, involving a large number of variables, such as type of concrete, concrete strength, tension steel ratio, compression reinforcement and loaded area. The results show very good agreement between the predicted and experimental values. The uniqueness of the model is that it incorporates many physical characteristics of the slabs and their failure behavior, and this is reflected by its ability to predict extremely well the results of tests conducted by researchers other than the authors.  相似文献   

11.
Connections for composite concrete slab and LVL flooring systems   总被引:1,自引:1,他引:0  
Composite concrete slab and timber flooring systems are commonly used in many parts of the world to exploit the high strength-to-weight ratio of timber and the good acoustic separation provided by concrete floor slabs. This paper describes the results of an experimental programme that investigated the suitability of a range of connectors to transfer shear between a concrete slab and a laminated veneer lumber (LVL) beam. Shear tests on reduced scale specimens were performed with the aim of comparing the strength, stiffness, and post-peak performance of different connectors such as round and rectangular concrete plugs with and without screw and steel pipe reinforcement, proprietary (SFS) screws, coach screws with different diameters, sheet brace anchors, and framing brackets. The rectangular concrete plug reinforced with a coach screw was found to provide the greatest stiffness and strength, as well as favourable post-peak behaviour. Such a system can be used for cost-effective composite floor systems due to its efficient cost-to-capacity ratio, which reduces the number of connectors needed along the beam axis to achieve the composite action.  相似文献   

12.
碳纤维布约束混凝土柱的非线性分析   总被引:1,自引:1,他引:0  
李静  钱稼茹 《工程力学》2005,22(1):159-163,199
用分级加曲率、逐步数值积分的方法计算缠绕碳纤维布(CFS)的混凝土柱的截面弯矩—曲率(M-f)关系曲线及其在轴压力和水平力共同作用下的水平力-柱顶位移(P-δ)曲线;编制了CFS约束混凝土柱在轴压力和水平力共同作用下的非线性全过程分析程序。电算得到的8根CFS约束混凝土柱和1根普通混凝土柱的P-δ曲线与试验结果吻合较好。通过非线性分析,研究了CFS约束程度、轴压比对CFS约束混凝土柱屈服后变形能力的影响,分析结果与试验结果在概念上一致。  相似文献   

13.
Engineered cementitious composites (ECC) are a class of high-performance fiber reinforced cementitious composite with strain hardening and multiple cracking properties. For a reinforced concrete member, substitution of conventional concrete with ECC can significantly improve the deformation characteristics in terms of reinforced composite tensile or shear strength and energy dissipation ability. In this paper, a number of RC/ECC composite beam-column joints have been tested under reversed cyclic loading to study the effect of substitution of concrete with ECC in the joint zone on the seismic behaviors of composite members. The experimental parameters include shear reinforcement ratio in the joint zone, axial load level on the column and substitution of concrete with ECC or not. According to the test results, for the specimens without shear reinforcement in the joint zone, substitution of concrete with ECC in the joint zone cannot change the brittle shear failure in the joint zone, but can significantly increase the load capacity and ductility of the beam-column joint specimens, as well as the energy dissipation ability due to high ductility and shear strength of ECC material. For the specimens with insufficient or proper shear reinforcement ratio, substitution of concrete with ECC in the joint zone can lead to failure mode change from brittle shear failure in the joint zone to a more ductile failure mode, i.e. flexural failure at the base of the beam, with increased load capacity, ductility and energy dissipation ability. Increase of axial load on column and shear reinforcement in the joint zone have little effect on seismic behaviors of the members when they failed by flexural failure at the base of beam. In a word, the substitution of concrete with ECC in the joint zone was experimentally proved to be an effective method to increase the seismic resistance of beam-column joint specimens.  相似文献   

14.
A general mathematical model is developed to describe the stress–strain (fcεc) relationship of FRP confined concrete. The relationship is applicable to both circular and rectangular columns, and accounts for the main parameters that influence the stress–strain response. These include the area and material properties of the external FRP wraps, the aspect ratio of rectangular column sections, the corner radius used for FRP application, and the volumetric ratio and configuration of internal transverse steel. The proposed model reproduced accurately experimental results of stress–strain or load–deformation response of circular and rectangular columns. In addition to its importance in evaluating the effect of FRP confinement on the ultimate axial strength of concrete columns, the developed fcεc relationship can be employed very efficiently and effectively for analyzing the response of FRP confined concrete under different types of load application.  相似文献   

15.
This article presents experimental and analytical results of 21 high-strength concrete tied columns under axial compression. Each 1500-mm-tall column had a 500 by 500 mm section reinforced with 12 D25 longitudinal bars enclosed by perimeter hoops only, or perimeter hoops plus typical crossties, or perimeter and intermediate hoops. The concrete strengths of cylinder tests ranged between 55 and 99 MPa. The column compression tests showed that the longitudinal bars could be laterally supported by hoop corners or 135-degree seismic hooks of crossties, but not restrained by 90-degree hooks, which lost effectiveness after spalling of cover concrete. The proposed analytical approach used the existing Mander model and the Euler equation to determine the confined concrete strength and the buckling strength of longitudinal bars, respectively. With rational assumptions of confinement effectiveness and unsupported lengths, the proposed analytical approach can well predict the complete load-deformation response of test columns.  相似文献   

16.
通过对7根500 MPa级钢筋自密实混凝土短柱试件的偏心受压试验,研究了试件的受力特征以及高强钢筋与自密实混凝土之间的协同工作性能。试验结果表明,500 MPa级钢筋在柱中与自密实混凝土协同工作性能良好,试件在偏心受压全过程中基本符合平截面假定。采用ABAQUS软件,建立500 MPa级钢筋自密实混凝土偏压短柱的有限元模型,利用试验实测结果验证模型的适用性与可靠度,并分析自密实混凝土强度、初始荷载偏心距和纵筋配筋率对偏心受压短柱力学性能的影响规律。试验实测值与有限元模拟分析结果表明,500MPa级钢筋自密实混凝土偏压短柱正截面受压承载力可采用《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)中的相关公式计算;为保证一定的安全储备,建议500 MPa级钢筋的设计强度取值为fsd=fsd'=420 MPa,材料分项系数取值为γs=1.2。  相似文献   

17.
A composite column consisting of steel, concrete and fiber reinforced polymer (FRP) is presented and assessed through experimental testing and analytical modeling. The composite column utilizes a glass FRP (GFRP) composite tube that surrounds a steel I-section, which is subsequently filled with concrete. The GFRP tube acts as a stay-in-place form in addition to providing confinement to the concrete. This study investigates the behavior of the proposed composite columns under axial loading. A total of seven specimens were tested. The influence of concrete shrinkage on the compressive behavior of the composite columns was also investigated. Significant confinement and composite action resulted in enhanced compressive behavior. The addition of a shrinkage reducing agent was found to further improve the compressive behavior of the composite columns. An analytical model was developed to predict the behavior of the composite columns under axial loading.  相似文献   

18.
This paper presents the results of an experimental study on the application of strapping technique for retrofit of concrete compressive specimens. In this technique, standard strapping devices, which are used in the packaging industry, are applied to post-tension high strength metal strips around the concrete columns. Experimental program included axial compressive tests on 72 cylindrical and prismatic compressive specimens, which were actively confined by pre-stressed metal strips. The effects of various parameters on strength and ductility of confined concrete were studied including compressive strength of concrete, mechanical volumetric ratio of confining strips, post-tensioning force in the strip, number of strip layers wrapped around the specimens and details of strip joint. The effects of strength and ductility of confining strips on the behavior of confined specimens were also studied. Longitudinal and lateral strains of concrete and strain of the strips were monitored. Test results showed significant increase in the strength and ductility of specimens due to active confinement by metal strips. It was observed that ductility of confining material plays the most important role in enhancement of concrete ductility. The gain in strength is strongly dependent to the effective mechanical volumetric ratio of confining strips. It was also observed that the active confinement of concrete by post-tensioning the confining element results in stiffer pre-peak response of concrete specimens than the usual passive confinement.  相似文献   

19.
Behavior of normal strength concrete columns reinforced with a new reinforcement, termed Prefabricated Cage System (PCS) is investigated. A total of 16 small-scale PCS and rebar reinforced column specimens were constructed and tested under monotonic axial displacement. The experimental results indicate that the overall behavior of rebar and PCS reinforced specimens are comparable prior to achieving the peak column load. In general, PCS specimens are more ductile and absorb more energy than similar rebar specimens after the peak load is reached. The effect of different parameters, such as the steel tube thickness, number of longitudinal reinforcements, transverse steel spacing, and crossties on the specimens’ strength and deformation capacity are investigated. A confined concrete model is proposed and used to predict the load–displacement response. The theoretical load–displacement relations obtained from the proposed model are compared with those obtained from the Mander et al. (J Struct Eng 114(8):1804–1826, 1988) confinement model.  相似文献   

20.
为研究传统风格建筑混凝土双梁-柱节点的破坏特征及抗震性能,进行了2个节点试件的动力循环加载试验,包括一个典型传统风格建筑混凝土双梁-柱节点和一个单梁-柱节点.观察了节点试件的受力过程及破坏特征,研究了试件的荷载-位移滞回曲线、骨架曲线、承载能力、刚度及承载力退化、延性和耗能能力,并对其破坏模式进行了分析.研究结果表明:...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号