首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An organically modified montmorillonite was compounded with ethylene vinyl acetate copolymer (EVA), low density polyethylene (LDPE), and high density polyethylene (HDPE) in a twin-screw extruder. The resulting organoclay-polyethylene nanocomposites were then blown into films. Tensile properties and oxygen permeability of these nanocomposite films were investigated to understand the effects of organoclay on different types of polyethylene. It was found that the clay enhancing effects are function of the matrix. The mechanical and oxygen barrier properties of clay/EVA systems increased with clay loading. Both the tensile modulus and oxygen barrier of EVA doubled at 5 wt% clay. Maleic anhydride grafted polyethylene (MAPE) usually is used as a compatibilizer for LDPE and HDPE-based nanocomposites. However, the MAPEs were found to weaken the oxygen barrier of the PEs, especially for HDPE. This is believed to be a result of less compactness caused by the large side groups and the increase in polarity of the MAPEs. Incorporating 5 wt% clay improves the oxygen barrier by 30% and the tensile modulus by 37% for the LDPE/MAPE system. Incorporation of clay does not enhance the properties of the HDPE-based systems, likely due to large domain structure and poor bonding. Halpin–Tsai equation and the tortuous path equation were used to model the tensile modulus and oxygen permeability of the clay/EVA nanocomposite films. POLYM. ENG. SCI., 47:1101–1107, 2007. © 2007 Society of Plastics Engineers  相似文献   

2.
Attempts were made to trace the effect of organoclay (OC) on the rheological and mechanical behaviors of the low density polyethylene (LDPE)/ethylene‐vinyl acetate (EVA) blends. To do this effectively, in addition to LDPE/EVA/OC system, pure LDPE and LDPE/EVA blends were also examined as model systems. The rheological behavior was determined by the capillary rheometer. Morphological characterization was also carried out using X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and theoretical approach based on interfacial energies. Shear viscosity, tensile strength and elastic modulus of LDPE/EVA were found to decrease by increasing the EVA content, while for LDPE/EVA/OC ternary nanocomposites, such properties showed an increase by increasing the content of EVA. Such behavior was explained by the morphological characteristic of the system in which OC was mainly intercalated/exfoliated in the EVA phase. This morphological characteristic was corroborated by the XRD, TEM and interfacial energies data. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

3.
Poly(ethylene terephthalate) (PET)/Cloisite 30B (C30B) nanocomposites containing different concentrations of the organoclay were prepared using two different twin‐screw extrusion processes: conventional melt mixing and water‐assisted melt mixing. The reduction of the molecular weight of the PET matrix, caused by hydrolysis during the water‐assisted extrusion, was compensated by subsequent solid‐state polymerization (SSP). X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses showed intercalated/exfoliated morphology in all PET/C30B nanocomposites, with a higher degree of intercalation and delamination for the water‐assisted process. Rheological, thermal, mechanical, and gas barrier properties of the PET nanocomposites were also studied. Enhanced mechanical and barrier properties were obtained in PET‐C30B nanocomposites compared to the neat PET. The nanocomposites exhibited higher tensile modulus and lower oxygen permeability after SSP. The elongation at break was significantly higher for SSP nanocomposites than for nanocomposites processed by conventional melt mixing. POLYM. ENG. SCI., 54:1879–1892, 2014. © 2013 Society of Plastics Engineers  相似文献   

4.
In the present study, new functional poly(amide‐imide)/organoclay nanocomposite films were successfully fabricated through the solution intercalation technique. New poly(amide‐imide) (PAI) containing glycine was synthesized via solution polycondensation of 1,1',3,3'‐tetraoxo(5,5'‐biisoindoline‐2,2'‐diyl)diacetic acid with 4,4′‐diaminodiphenylsulfone. The synthesized PAI was characterized by 1H NMR, Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography, elemental analysis and inherent viscosity. Then, PAI/organoclay nanocomposite films containing 4 and 8 wt% of organoclay were prepared via solution intercalation through blending of organoclay 30B with the PAI solution. The nanostructures and properties of the PAI/organoclay were investigated using FTIR spectroscopy, XRD, transmission electron microscopy (TEM), TGA, DSC and microscale combustion calorimetry. XRD and TEM revealed the good dispersion of organoclay in the polymer matrix. TGA indicated that the addition of organoclay into the PAI matrix increases the thermal decomposition temperatures and char yields of the nanocomposites. Organoclay shows a positive effect in improving the flame retardancy of the PAI, reflecting the decrease in heat release rate, the total heat release and the heat release capacity of the PAI nanocomposites, while the thermal stability of the PAI nanocomposites only increased slightly compared with the neat polymer. © 2013 Society of Chemical Industry  相似文献   

5.
The aim of this study was to prepare poly (ethylene‐co‐vinyl acetate) (EVA)/ low density polyethylene (LDPE)/magnesium hydroxide (MH) composites applicable in cable industry with required flame retardancy. For this reason, two types of organo‐modified montmorillonites (OMMT) with different surface polarites (Cloisite 15A and Cloisite 30B) at various concentrations, and also combination of these two OMMTs with overall loadings of 2 wt % and 5 wt % were used. The samples were compounded using a twin screw extruder with total (MH + OMMT) feeding of 55 wt % and 60 wt %. Limiting oxygen index (LOI) of the samples containing 2 wt % of OMMTs increased about 16% and dripping was suppressed according to vertical burning test (UL‐94V). Thermogravimetric results of EVA/LDPE/MH samples containing OMMT showed that the beginning of second step degradation was shifted about 50°C to higher temperatures. The composite tensile strength results showed enhancement by incorporating some amount of nanoclays with EVA/LDPE/MH composites. Scanning electron microscopy images confirmed that MH particles had better wetting by EVA matrix in presence of nanoclays. Oxidative induction time of the EVA/LDPE/MH/OMMT nanocomposites was 140 min, which was more than that of the samples without OMMT (20 min). Employing the equal weight ratios of the two OMMTs demonstrated a synergistic effect on flame retardancy of the samples according to the both tests results (LOI, UL‐94V). X‐ray diffraction analysis of the samples confirmed the intercalation/semiexfoliation structure of nanosilicate layers in the bulk of EVA/LDPE matrix. This led to longer elongation at break and thermal stability of Cloisite 15A based nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40452.  相似文献   

6.
Poly[ethylene‐co‐(vinyl acetate)] (EVA)/(Standard Malaysian natural rubber) (SMR L)/organoclay nanocomposites were prepared by using melt intercalation and solution blending methods. In both preparation methods, the EVA: (SMR L) ratio was prefixed at 50:50, while the organoclay loading was varied from 0 to 10 phr. The effects of two different processing routes and organoclay loading on the morphology, tensile, properties thermal properties, and flammability of the nanocomposites were studied. X‐ray diffraction results and transmission electron microscopy images proved that solution blending promotes better dispersion of organoclay than melt intercalation. Thus, the nanocomposites prepared by the solution‐blending method exhibited higher values of tensile strength, stress at 100% elongation (M100), and thermal stability. The M100 value and thermal stability improved proportionally with the increase of organoclay content, owing to the demobilizing effect and the barrier properties of the organoclay. The optimum tensile strength value was achieved at a 2‐phr organoclay loading. Further increases in loading decreased the strength of the nanocomposites. Tensile fracture surfaces of the nanocomposites prepared by both methods showed different fracture behavior, as evidenced by scanning electron microscopy images. Flammability decreased when the organoclay loading increased for the nanocomposites prepared by both methods. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

7.
Ethylene‐(vinyl acetate) copolymer (EVA)/rectorite nanocomposites were prepared by direct melt extrusion of EVA and organo‐rectorite. The microstructures and thermal properties of EVA nanocomposites were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), solid‐state nuclear magnetic spectroscopy, positron annihilation spectroscopy, thermal gravimetric analysis (TGA) and dynamic mechanical analysis techniques. XRD pattern and SEM images show that the intercalated structure is formed and rectorite is finely dispersed in EVA matrix. When organoclay content of the hybrid increases to 7.5 wt%, or pristine rectorite was used instead of organoclay, the crystallization behavior of EVA nanocomposite changes greatly and the ratio of the monoclinic to orthorhombic crystal increases significantly. The relative fractional free volume of the nanocomposite decreases with the increasing organo‐rectorite content, and the values of damping factor (tan δ) for all nanocomposites are lower than that of pure EVA. These facts illuminate that intercalated structure restricts the segment motion and mobilization of polymer chain. TGA results of EVA nanocomposites in air indicate that deacylation of EVA is accelerated because of the catalytic effect and the thermal degradation of the main chain is delayed owing to the barrier effect of silicate layers. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
In this article, oxygen barrier properties of nanocomposite films composed of organoclay (OC), high-density polyethylene (HDPE), and ethylene vinyl acetate (EVA) copolymer have been investigated. The nanocomposite films whose EVA forms a dominant fraction were prepared using the solution method. The dispersion of the OC in the HDPE/EVA blend was improved through taking two-step procedure in the preparation of nanocomposite. First, the OC and EVA were dissolved in chloroform. Then, the resulting product, after evaporating most of the solvent, along with HDPE was dissolved in xylene. The obtained nanocomposite films underwent a number of tests in order to examine their barrier properties including X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that OC/HDPE/EVA nanocomposites are intercalated and partially exfoliated. Furthermore, from the TEM micrographs, the organoclay experimental aspect ratio was found. Also, the O2 permeability through the films was evaluated, which showed that adding both OC and HDPE to EVA leads to a remarkable increase in the barrier properties of EVA films. Finally, by using the gas permeation results and existing permeation theories, the organoclay theoretical aspect ratio was predicted. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

9.
A detailed study of the performance of blown films prepared from nanocomposites based on LDPE and a sodium ionomer of poly(ethylene-co-methacrylic acid) is reported. The organoclay content and film blowing conditions were varied to determine the effect of platelet concentration, exfoliation and orientation on film properties. Mechanical properties including stiffness, puncture resistance, and resistance to tear propagation were evaluated and compared to corresponding properties of unfilled polymer films. Permeability of the films to moisture and common atmospheric gases like oxygen, nitrogen, and carbon dioxide was also measured using standard testing methods.In general, films prepared from nanocomposites based on the ionomer exhibited greater improvements in mechanical and barrier properties over unfilled polymer compared to similar films prepared from nanocomposites based on LDPE. This is due to the greater degree of organoclay exfoliation achieved in the ionomer compared to LDPE. The addition of 3 wt% MMT to the ionomer increased the tensile modulus of blown films by an average of 50% without sacrificing much tear strength, puncture resistance or film extensibility. Gas permeability in these films was lowered by 40% and moisture transmission rate was reduced by 60%.  相似文献   

10.
Ethylene vinyl acetate (EVA)/natural rubber (SMR L)/organoclay thermoplastic elastomer nanocomposites were melt compounded in an internal mixer, Haake Rheometer, at 120°C and 50 rpm rotor speed. In this paper, we demonstrate the effect of different blending sequences and organoclay loading from 2 to 10 phr (parts per hundred resins) on the tensile properties, morphology, thermal degradation, flammability, and water absorption behavior of EVA/SMR L/organoclay nanocomposites. EVA/SMR L/organoclay TPE nanocomposites were prepared by three different blending sequences, and each exhibited different tensile properties. Results indicated that the presence of organoclay increases the tensile properties, resistance toward thermal degradation, resistance to water permeation, and flame retardancy for all the nanocomposites prepared via different blending sequences. However, the optimum results for all the properties studied were achieved when EVA was blended with organoclay first and SMR L was incorporated later into the blend. The optimum organoclay loading was achieved at 2 phr. Results from scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies showed that at 2 phr organoclay loading, nanostructures of individual silicate layers were achieved, whereas at 8 phr organoclay loading, agglomeration was observed. Flammability of the nanocomposites decreased when the organoclay loading increased.  相似文献   

11.
The effect of vinyl acetat (VA) on the morphological, thermal stability, and mechanical properties of heterophasic polypropylene–(ethylene‐propylene) copolymer (PP–EP)/poly(ethylene vinyl acetate) (EVA)/organoclay nanocomposites was studied. Tailored organoclay C20A was selected to enhance the exfoliation of the clay platelets. Depending on the VA content, there were two morphological organoclay populations in the systems. Both populations were directly observed by scanning transmission electron microscopy and measured by wide‐angle X‐ray diffraction and small‐angle X‐ray scattering. The content of VA in EVA originated spherical and elongated morphologies in the resultant nanocomposites. High‐VA content led to a better intercalation of the organoclay platelets. Measurement of thermal properties suggested that higher VA decreases thermal stability in samples both with and without organoclay, although nanocomposites had higher thermal stability than samples without clay. The storage modulus increased both with nanoclay and VA content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
High‐impact polystyrene (HIPS)/organically modified montmorillonite (organoclay) nanocomposites were synthesized via in situ polymerization. The effects of the organoclay on the morphology and material properties of HIPS/organoclay nanocomposites were investigated. X‐ray diffraction and transmission electron microscopy experiments revealed that intercalation of polymer chains into silicate layers was achieved, and the addition of nanoclay led to an increase in the size of the rubber domain in the composites. In comparison with neat HIPS, the HIPS/organoclay nanocomposites exhibited improved thermal stability as well as an increase in both the complex viscosity and storage modulus. The presence of intercalated organoclay drastically enhanced the gas‐barrier properties because of the increase in the tortuosity of the diffusive path for a penetrating gas molecule. Some mechanical properties, including the tensile modulus, were superior to those of conventional HIPS. Finally, the preparation of the nanocomposites with a minimal loss of impact properties was proposed through changes in the synthetic procedure. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Ethylene vinyl acetate (EVA)/organoclay/compatibilizer nanocomposites were produced using a melt compounding technique in an internal mixer, Haake Rheometer, at 120°C and 50 rpm rotor speed. Effects of organoclay loading (from 2 to 10 phr—parts per hundred of resin and methyl ethyl ketone (MEK), used as a compatibilizer, on the processing properties, tensile properties, morphology, thermal degradation, and water absorption behavior of EVA/organoclay nanocomposites were studied. Results indicate that the presence of organoclay increase the processing torque, tensile properties, thermal degradation, and resistance to water absorption. The optimum organoclay loading was achieved at 2 phr. This was caused by the dispersion state of individual silicate layers (intercalation/exfoliation) in EVA matrix. The intercalation/exfoliation structure affects the properties of EVA/organoclay nanocomposites as evidenced from the morphology studies such as x-ray diffraction (XRD) and transmission electron microscopy (TEM) evaluation. The addition of MEK has the ability to improve the tensile properties, thermal degradation, and slightly reduces the resistance of water permeation of EVA/organoclay nanocomposites. The enhanced properties were seen as a result of the better matrix and filler interaction. The EVA/organoclay/MEK nanocomposites shows better intercalation/exfoliation of individual silicate layers in the EVA matrix as indicated by TEM. Moreover, the XRD evaluation shows that intercalation/exfoliation of the organoclay was formed in the EVA matrix.  相似文献   

14.
The combined effects of an organically modified montmorillonite (OMMT) and an intumescent flame retardant, poly (piperazine spirocyclic pentaerythritol bisphosphonate) (PPSPB), in (low‐density polyethylene)/[ethylene‐(vinyl acetate) copolymer] (LDPE/EVA) nanocomposites were observed. The results from X‐ray diffraction and transmission electron microscopy studies showed that exfoliated LDPE/EVA/PPSPB/OMMT nanocomposites were formed. Thermal stability and flammability properties were investigated by thermogravimetric analysis and cone calorimeter tests. The combination of PPSPB and montmorillonite improved thermal stability and reduced significantly the flammability, including peak heat release rate (PHRR), total heat release, average mass loss rate, etc. The PHRR of LDPE/EVA/PPSPB/OMMT was reduced by about 50% compared to that of an LDPE/EVA blend. The morphology and composition of the residues generated by cone calorimeter tests were investigated by scanning electronic microscopy (SEM) and energy dispersive X‐ray (EDX) analysis. The results of SEM showed that a compact and dense intumescent char was formed from the LDPE/EVA/PPSPB/OMMT nanocomposite upon combustion. The results of EDX examination revealed that the carbon content of this char was increased significantly by the combined effect of PPSPB and montmorillonite. J. VINYL ADDIT. TECHNOL., 19:285–292, 2013. © 2013 Society of Plastics Engineers  相似文献   

15.
(Low‐density polyethylene) (LDPE)/clay nanocomposites were prepared by melt blending in a twin‐screw extruder by using different mixing methods. Zinc‐neutralized carboxylate ionomer was used as a compatibilizer. Blown films of the nanocomposites were then prepared. The effect of mixing method on the clay dispersion and properties of the nanocomposites was evaluated by wide‐angle X‐ray diffraction analysis, mechanical properties, thermal properties, and barrier properties. The structure and properties of nanocomposites containing different amounts of nanoclay prepared by selected mixing techniques were also investigated. It was found that melt compounding of Surlyn/clay masterbatch with pure LDPE and Surlyn (two‐step‐a method) results in better dispersion and intercalation of the nanofillers than melt mixing of LDPE/Surlyn/clay masterbatch with pure LDPE and surlyn (two‐step‐b method) and direct mixing of LDPE with clay. The films containing ionomer have good barrier properties. A wide‐angle X‐ray diffraction pattern indicates that intercalation of polymer chains into the clay galleries decreases by increasing the clay content. Barrier properties and tensile modulus of the films were improved by increasing the clay content. In addition, tensile strength increased in the machine direction, but it decreased in the transverse direction by increasing the clay content. DSC results showed that increasing the clay content does not show significant change in the melting and crystallization temperatures. The results of thermogravimetric analysis showed that the thermal stability of the nanocomposites decreased by increasing the clay content more than 1 wt%. J. VINYL ADDIT. TECHNOL., 21:60–69, 2015. © 2014 Society of Plastics Engineers  相似文献   

16.
The main objective of this study is to obtain ethylene‐vinyl acetate copolymer (EVA)/multi‐walled carbon nanotube (MWCNT)/organoclay foams with improved mechanical properties without increase of their density, compared with EVA/MWCNT foams. MWCNT content was fixed at 5 phr in this study. To achieve the objective, EVA was melt‐mixed with MWCNTs and organoclays in a bench kneader. And the obtained EVA/MWCNT/organoclay mixtures were mixed with chemical blowing agent and cross‐linking agent in a two roll‐mill. After being mixed in a two roll‐mill, the mixtures were put in a mold and the foams were obtained by compression‐molding. The effect of organoclay content on the mechanical properties and surface resistivity of EVA/MWCNT (5 phr)/organoclay foams was investigated. The addition of 1 phr organoclays to the EVA/MWCNT (5 phr) foams resulted in the improvement of tensile strength, 100% tensile modulus, tear strength, and compression set without increase of the density. However, further increase in content of organoclay (3 phr) leaded to a deterioration of mechanical properties. Therefore, determining the optimal content of organoclay was very important in order to achieve the main objective of this study. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

17.
This paper studies the morphology and tensile properties of nanocomposite foams of blends of low‐density polyethylene (LDPE) and poly(ethylene‐co‐vinyl acetate) (EVA). Preparations of LDPE/EVA nanocomposites were conducted in an internal mixer, and then samples were foamed via a batch foaming method. Morphology of the nanocomposite blends and nanocomposite foams was studied by X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy. Morphological observations showed that nanoparticle dispersion in the polymeric matrix was affected by the blend ratio in a way such that EVA‐rich samples had a better dispersion of nanoclay than LDPE‐rich ones. In addition, the tensile properties of the nanocomposite foams were related to different variables such as blend ratio, clay content, and foam density. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

18.
Natural rubber (NR)/poly(ethylene‐co‐vinyl acetate) (EVA) blend–clay nanocomposites were prepared and characterized. The blend nanocomposites were prepared through the melt mixing of NR/EVA in a ratio of 40/60 with various amounts of organoclay with an internal mixer followed by compression molding. X‐ray diffraction patterns revealed that the nanocomposites formed were intercalated. The formation of the intercalated nanocomposites was also indicated by transmission electron microscopy. Scanning electron microscopy, used to study the fractured surface morphology, showed that the distribution of the organoclay in the polymer matrix was homogeneous. The tensile modulus of the nanocomposites increased with an increase in the organoclay content. However, an increase in the organoclay content up to 5 phr did not affect the tensile strength, but the organoclay reduced this property when it was increased further. This study also indicated that a low silicate content dispersed in the blend matrix was capable of increasing the storage modulus of the material. The addition of the organoclay also increased the decomposition temperature of the NR/EVA blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 353–362, 2006  相似文献   

19.
Nanocomposites of low‐density polyethylene/polyhydroxybutyrate (LDPE/PHB) containing organomodified montmorillonite (OMMT) and/or LDPE grafted maleic anhydride (LDPE‐g‐MAH) were prepared with a wide range of composition ratios using a vertical co‐rotating twin‐screw microCompounder. To infer the effect of OMMT and LDPE‐g‐MAH on the thermal stability of prepared nanocomposites, all samples were characterized by thermogravimetric analysis while changing clay and compatibilizer contents. Accordingly, two commonly used kinetic models (Coats–Redfern and Horowitz–Metzger) were employed to correlate the thermal stability of the samples with kinetic parameters, including activation energy and pre‐exponential factor. Furthermore, morphological features of LDPE/PHB in the presence or absence of OMMT and LDPE‐g‐MAH were studied using scanning electron microscopy, transmission electron microscopy, and wide‐angle X‐ray diffraction analysis. It was found that for a specific OMMT composition ratio (1 wt %), the thermal stability is enhanced due to an exfoliated structure. However, for samples containing more organoclay (>=3 wt %), the thermal stability was reduced showing the competition between the barrier effect of organoclay platelets and the catalyzing effect of ammonium salts. Moreover, when using LDPE‐g‐MAH as compatibilizer, it acted as a good coupling agent in all compositions in LDPE major phase systems in contrast to PHB major phase samples. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45922.  相似文献   

20.
Ternary nanocomposites based on poly(butylene terephthalate) (PBT), maleic anhydride grafted poly(ethylene‐co‐vinyl acetate) (EVA‐g‐MAH), and organically modified montmorllonite (organoclays) were prepared through four different blending sequences in a Haake rheocord mixer: (1) To blend PBT, EVA‐g‐MAH and organoclays in one step; (2) First to prepare EVA‐g‐MAH/organoclay nanocomposite, then mix it with PBT to get the final nanocomposite; (3) To mix PBT with organoclays first, then the PBT/organoclay nanocomposite with EVA‐g‐MAH. (4) To mix organoclays with the PBT/EVA‐g‐MAH blend. The microstructure of the PBT/EVA‐g‐MAH/organoclay ternary hybrids was characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). It was found that the blending sequence significantly influences the microstructure of PBT/EVA‐g‐MAH/organoclay ternary hybrids and the dispersion behavior of the organoclays in the polymer matrix. Tensile and impact properties of the hybrids were also studied. The results showed that the mixing sequence (2) gives the best tensile and impact strength due to its fine “sea‐island” morphology of PBT/EVA‐g‐MAH blend and good dispersion of the organoclays in the continuous PBT matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号