首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Performance‐based design method, particularly direct displacement‐based design (DDBD) method, has been widely used for seismic design of structures. Estimation of equivalent viscous damping factor used to characterize the substitute structure for different structural systems is a dominant parameter in this design methodology. In this paper, results of experimental and numerical investigations performed for estimating the equivalent viscous damping in DDBD procedure of two lateral resistance systems, moment frames and braced moment frames, are presented. For these investigations, cyclic loading tests are conducted on scaled moment resisting frames with and without bracing. The experimental results are also used to calibrate full‐scale numerical models. A numerical investigation is then conducted on a set of analytical moment resisting frames with and without bracing. The equivalent viscous damping and ductility of each analytical model are calculated from hysteretic responses. On the basis of analytical results, new equations are proposed for equivalent viscous damping as a function of ductility for reinforced concrete and steel braced reinforced concrete frames. As a result, the new equation is used in direct displacement‐based design of a steel braced reinforced concrete frame. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A displacement‐based design scheme can be applied to the seismic designs of special reinforce concrete (RC) shear walls. However, the displacement‐based design in the current seismic design codes does not consider the contribution of yield deformation of RC shear walls. In this study, the evaluation method of the deformation capacity for seismic designs of RC shear walls was analyzed and applied to a parametric study for the lateral deformations of RC shear walls. From the results of analyses with various design conditions, the contribution of yield deformation to the deformation capacity of an RC shear wall was analyzed. It was demonstrated that, for RC shear walls in tall buildings, the yield deformation increased as the ratio of wall height to length increased and reached more than 50% of total deformation. Therefore, for the reasonable design of special RC shear walls in tall buildings, the design equation including the yield deformation in the displacement‐based design process is proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Use of steel bracing in reinforced concrete frames   总被引:1,自引:0,他引:1  
In this paper the use of steel bracing in concrete-framed structures is investigated. The investigation is carried out through a series of tests conducted on a number of model frames. The object of the tests was to determine the degree of effectiveness of different diagonal bracing arrangements to increase the in-plane shear strength of the concrete frame and to observe the relative behaviour of tension and compression braces. The important question of the proper connections between the steel braces and the concrete frame is also considered. The test results indicate a considerable increase in the in-plane strength of the frame due to steel bracing. As an overall conclusion it is noted that, with proper connection between the brace and the frame, the steel bracing could be a viable alternative or supplement to shear walls in concrete framed buildings in seismic areas.  相似文献   

4.
The time‐dependent behavior is a major consideration in the design and construction of tall buildings, especially in concrete and composite structural systems. To make an analysis of long‐term effect of steel‐reinforced concrete structures, the method of using master–slave constraint to deduce substructure element model of composite members was introduced, and the problem of co‐work between steel and concrete was solved. The creep calculation method of combined Age‐adjusted Effective Modulus Method (AEMM) and finite element method was adopted. Steel Reinforced Concrete Construction Modeling (SRCCM), a calculation program based on Visual C++ and ObjectARX, was developed for simulating the construction process of high‐rise composite structures. The use of the method is illustrated through one computation example of Shanghai Center Tower, which is a super high‐rise steel‐reinforced concrete structures. The method provides valuable information about time effects that may be used in designing new structures or in diagnosis existing structures. The results also indicate that the vertical shortening of Shanghai Center Tower between column and core‐tube is significant. Such differential length changes should be compensated during the construction process of high‐rise composite structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, seismic collapse of reinforced concrete moment frames is assessed using endurance time (ET) analysis. A set of 30 frames that incorporate deterioration of concrete components is used for this assessment. Application of ET method for collapse assessment of structures is explained, and its accuracy for this purpose is evaluated by comparing its results with incremental dynamic analysis results. Input motions for ET analysis are generated based on ASCE7‐05 design spectrum, and also accelerograms used for incremental dynamic analysis are spectrally matched to the same spectrum. Distribution of different engineering demand parameters over frames height and their values at collapse occurrence are compared for two methods. Results show that spectral accelerations in which collapse occurs in both analyses are very similar for most of the frames, and ET method can appropriately predict the collapse mechanisms of the structures especially for taller frames. Accuracy of ET method in collapse assessment of reinforced concrete moment frames is satisfactory, and this method can be used as a good estimator for study of collapse mechanisms with much less computational effort. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The traditional trial‐and‐error design approach is inefficient to determine an economical design satisfying also the safety criteria. Structural design optimization, on the other hand, provides a numerical procedure that can replace the traditional design approach with an automated one. The objective of this work is to propose a performance‐based seismic design procedure, formulated as a structural design optimization problem, for designing steel and steel–reinforced concrete composite buildings subject to interstorey drift limitations. For this purpose, eight test examples are considered, in particular four steel and four steel–reinforced concrete composite buildings are optimally designed with minimum initial cost. Life‐cycle cost analysis (LCCA) is considered as a reliable tool for measuring the damage cost due to future earthquakes that will occur during the design life of a structure. In this study, LCCA is employed for assessing the optimum designs obtained for steel and steel–reinforced concrete composite design practices. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In order to investigate the seismic performance of steel‐reinforced recycled concrete (SRRC) frame with infill wall, low cyclic loading tests on four frames with infill wall and one frame without infill wall were conducted. The failure modes, hysteresis loops, skeleton curves, bearing capacity, ductility, stiffness degradation, and energy dissipation capacity of specimens were analyzed. The seismic performance of SRRC frames with and without infill wall was compared. The influence of the aspect ratio of infill wall, the axial compression ratio of column, and the distance of horizontal reinforcements of infill wall were investigated. Test results show that compared to the SRRC frame without infill wall, the SRRC frame with infill wall had higher bearing capacity and initial stiffness, but faster stiffness degradation and worse energy dissipation capacity. With the increase of aspect ratio of infill wall and axial compression ratio of column, the bearing capacity and initial stiffness of SRRC frame with infill wall increased, whereas the ductility decreased. With the decrease of distance of horizontal reinforcements of infill wall, the initial stiffness and energy dissipation capacity of SRRC frame with infill wall increased. After the infill wall fails under earthquake, the remaining SRRC frame has good seismic performance.  相似文献   

8.
9.
Steel bracing is able to improve progressive collapse resistance of reinforced concrete (RC) frames, but the bracing design is typically based on seismic retrofitting or lateral stability. There is no approach for design of steel bracing against progressive collapse. To this end, a retrofitting approach with steel braces is proposed based on analysis of macro finite element (FE) models with fiber beam elements. The FE models were initially validated through the experimental results of a braced frame and then used to investigate the effects of pertinent parameters on the progressive collapse resistance of planar frames. The results suggest the braces should be placed at the top story. Thereafter, macro FE models are built to investigate the dynamic responses of the three‐dimensional prototype RC frames under different column removal scenarios (CRS) and show the necessity of retrofitting. Accordingly, the design approach of steel bracing is proposed with incremental dynamic analysis (IDA) and assuming independent contribution of braces and frames to resistance. Finally, the fragility analysis of the frames under a corner‐penultimate‐exterior CRS is conducted through IDA and Monte Carlo simulation, and the results confirm the validity of the proposed design approach for retrofitting RC frames.  相似文献   

10.
通过3个算例,对采用人字形和V字形的无粘结内藏钢板支撑剪力墙(即人字形和V字形防屈曲支撑)的防屈曲支撑钢框架结构的抗震性能进行分析。重点考察大震下,支撑的轴力分布和对被撑柱所受轴力的影响。分析表明,采用结构在一阶振型下的支撑轴力分布来设计被撑柱的做法,适用于多层的防屈曲支撑钢框架结构;而对于高层的防屈曲支撑钢框架结构,高振型影响较显著,上述设计方法对被撑柱的设计较保守,有必要考虑高振型参与下的支撑轴力分布来设计被撑柱。  相似文献   

11.
The procedure to obtain the inelastic demand curves for the multi‐degree‐of‐freedom system, composed of inter‐story shear versus inter‐story displacement curve is introduced. The demand curves are established by using mode spectrum method, and the dynamical characteristic of structure under different earthquake hazard levels is taken into account. The relation of structure performance object and displacement ductility is adopted to deduce the relation of structure performance object and inter‐story demand curve. Therefore, the inter‐story demand curves take into account the inelastic behavior of structure under earthquake action adequately. Then, considering the seismic responding characteristic and the capacity curve of the frame structure, a new method named Inter‐Story Capacity Spectrum (ISCS) is put forward for the performance‐based seismic design of vertically irregular frame structures. Examples are presented to demonstrate the applicability and the utility of the proposed method. It is concluded that the new method can control the inter‐story drift, the order and position of hinges of vertically irregular structures under different earthquake hazard levels. Comparing with time‐history analysis method, it leans to safe and is superior to direct displacement‐based design method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The effects soil‐structure interaction (SSI) and lateral design load‐pattern are investigated on the seismic response of steel moment‐resisting frames (SMRFs) designed with a performance‐based plastic design (PBPD) method through a comprehensive analytical study on a series of 4‐, 8‐, 12‐, 14‐, and 16‐story models. The cone model is adopted to simulate SSI effects. A set of 20 strong earthquake records are used to examine the effects of different design parameters including fundamental period, design load‐pattern, target ductility, and base flexibility. It is shown that the lateral design load pattern can considerably affect the inelastic strength demands of SSI systems. The best design load patterns are then identified for the selected frames. Although SSI effects are usually ignored in the design of conventional structures, the results indicate that SSI can considerably influence the seismic performance of SMRFs. By increasing the base flexibility, the ductility demand in lower story levels decreases and the maximum demand shifts to the higher stories. The strength reduction factor of SMRFs also reduces by increasing the SSI effects, which implies the fixed‐base assumption may lead to underestimated designs for SSI systems. To address this issue, new ductility‐dependent strength reduction factors are proposed for multistory SMRFs with flexible base conditions.  相似文献   

13.
Due to the stable hysteretic behavior, buckling‐restrained braces (BRBs) have been increasingly adopted in reinforced concrete (RC) frame structures to develop a dual structural system (BRB‐RCF). This study proposed an alternative strength‐based design approach that decomposes the dual BRB‐RCF system into two independent RC frame and BRB system using the BRB‐carrying story shear ratio. The design of RC frame is performed in an integrated manner by considering the BRB postyielding force demands. Three RC frames with five, 10, and 15 stories were employed as prototype structures, and seven story shear ratios ranging from 0.1 to 0.7 were used to generate a total of 21 structural modes. The material usage, maximum axial compression ratio of columns, and elastic interstory drift ratio were compared for different story shear ratios. Nonlinear dynamic analysis of the BRB‐RCFs subjected to 12 ground motions were carried out. The seismic response including the maximum interstory drift ratio, hysteretic energy dissipation ratio, and actual BRB‐carrying story shear ratio were systematically assessed for different design story shear ratios. Based on the considerations of material usage and seismic performance, it is suggested that the design BRB‐carrying story shear ratio should be in the range of 0.3 to 0.5.  相似文献   

14.
Steel bracing of reinforced concrete (RC) frames has received noticeable attention in recent years as a retrofitting measure to increase the shear capacity of the existing RC buildings. In order to evaluate the seismic behaviour of steel-braced RC frames, some key response parameters, including the ductility and the overstrength factors, should first be determined. These two parameters are incorporated in structural design through a force reduction or a response modification factor. In this paper, the ductility and the overstrength factors as well as the response modification factor (or seismic behaviour factor) for steel chevron-braced RC frames have been evaluated by performing inelastic pushover analyses of brace-frame systems of different heights and configurations. The effects of some parameters influencing the value of behaviour factor, including the height of the frame and share of bracing system from the applied lateral load have been investigated. It is found that the latter parameter has a more localised effect on the R values and its influence does not warrant generalisation at this stage. However, the height of this type of lateral load-resisting system has a profound effect on the R factor, as it directly affects the ductility capacity of the dual system. Finally, based on the findings presented in the article, tentative R values have been proposed for steel chevron-braced moment-resisting RC frame dual systems for different ductility demands and compared with different type of bracing systems.  相似文献   

15.
Nonlinear static procedures are favored tools for practical applications in the structural engineering profession. However, some limitations are associated with them, including their deficiencies to properly reflect higher modal effects and inertial seismic forces fluctuations in their responses. Some different adaptive pushover methods intended to improve these limitations have been proposed in the literature, but each one has come out with a special deficiency. In this study, based on the concepts of the displacement‐based adaptive pushover, a new dual‐run procedure method called Improved DAP (IDAP) has been developed, aiming to improve higher modal and sign reversal consideration of pushover methods. The seismic scope of this study has been focused on near‐fault regions. Four concrete SMRF with different heights have been employed for the evaluations. The results of the proposed method in terms of capacity curves, interstory and shear profiles are compared with those of the IDA method. Results indicate that the ability of the new method in reproducing seismic story forces and capacity curves, as well as interstory drifts, has been improved in comparison with its primitive counterpart. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The seismic reliability of two 24‐story buildings that have the same geometry and structural layout was evaluated and compared. The structural system of the first building consists of ductile steel braces and composite moment‐resisting frames (traditional building). The structural system of the second building consists of nonductile flexible steel frames stiffened through a system of buckling‐restrained braces (innovative building). Whereas the former was designed according to the Mexico City Building Code, the latter was designed according to a displacement‐based methodology. Both buildings were assumed to be located at the same site in the lake zone of Mexico City. The study shows that in spite of being considerably lighter, the innovative building exhibits higher levels of reliability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Many steel–concrete hybrid buildings have been built in China. The seismic performance of such hybrid system is much more complicated than that of steel structure or reinforced concrete (RC) structure. A steel–concrete hybrid frame‐tube super‐tall building structure with new type of shear walls to be built in a district of seismic intensity 8 in China was studied for its structural complexity and irregularity. Both model test and numerical simulation were applied to obtain the detailed knowledge of seismic performance for this structure. First, a 1/30 scaled model structure was tested on the shaking table under different levels of earthquakes. The failure process and mechanism of the model structure are presented here. Nonlinear time‐history analysis of the prototype structure was then conducted by using the software PERFORM‐3D. The dynamic characteristics, inter‐story drift ratios and energy dissipation conditions are introduced. On the basis of the comparison between the deformation demand and capacity of main structural components at individual performance level under different earthquake level, the seismic performance at the member level was also evaluated. Despite the structural complexity and code‐exceeding height, both experimental and analytical results indicate that the overall seismic performance of the structure meet the requirements of the Chinese design code. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
束天明 《山西建筑》2012,38(16):30-31
对型钢混凝土构造设计提出优化方案,指出优化设计应充分考虑柱—梁节点受力性能和方便施工;分析了全型钢混凝土框架体系的优越性;提出确定型钢混凝土构件合理含钢率的原则,以指导类似工程的设计。  相似文献   

19.
The present paper investigates the feasibility of the application of stainless steel (SS) in the seismic design of braced frames, either concentrically (CBFs) or eccentrically (EBFs) braced. A sample of regular multi-storey CBFs and EBFs was designed in compliance with modern seismic standards based on capacity-design rules. The results of pushover and inelastic response history analyses demonstrate that systems employing SSs exhibit enhanced plastic deformations and excellent energy absorbing capacity with respect to mild steel braced frames. The augmented strain hardening of SS, which is nearly twice that of carbon steels, is beneficial to prevent local buckling in steel members, especially those subjected to high axial compression. The performed analyses also demonstrate that in CBFs with SS braces and columns the increase in overstrength is about 40% with respect to the configuration in mild steel. For EBFs, the use of SS in the diagonals or in braces and links increases the global overstrength of the lateral resisting system by 20%. When the EBFs employ braces and columns in SS the increase can be as high as 50%.  相似文献   

20.
Precast post‐tensioned rocking wall structural system has been developed in the recent past as a damage‐avoidance structural system for seismic regions. For a widespread use of this structural system, suitable design procedures are required to ensure a reliable and well‐predicted performance under different levels of seismic hazard. In the current study, a mid‐rise 20‐story rocking wall structure is selected and designed using the displacement‐based design procedure. Furthermore, two different capacity design procedures are used to predict the increased force demands due to higher mode effects. The time history results against moderate and severe level of seismic hazards show the effectiveness of displacement‐based design procedure in predicting and controlling the displacement and drift demands, while the simplified procedure and the modified modal superposition procedure for the capacity design are found to be unconservative and conservative, respectively. To further investigate the seismic demands, modal decomposition of inelastic seismic responses is carried out, and the contribution of different modes in the total responses is calculated. Based on this improved understanding, a mitigation technique of dual gap opening is employed. A detailed discussion about the location and design strength of the extra gap‐opening is carried out by considering different performance parameters. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号