首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, the influences of temperature and strain rate on the deformation behavior of cold‐rolled TRIP800 steel were investigated. Microstructural observation and tensile tests were performed and volume fractions of retained austenite were measured at various temperatures and strain rates. The results reveal that both temperature and strain rate affect the volume fractions of retained austenite that transforms into martensite. The strain‐induced transformation of retained austenite is retarded with increasing temperature and the retained austenite becomes more stable against straining. The amount of retained austenite that transforms into martensite is not influenced significantly by strain rate. The variation in mechanical properties with temperature and strain rate was related to the effects of dynamic strain aging, tempering of banite, high temperature softening, and the volume fractions of retained austenite.  相似文献   

2.
A new transformation induced plasticity (TRIP) steel containing high volume fraction of martensite was produced by austempering heat treatment cycle. Microstructure and tensile properties of this TRIP steel were investigated and compared to those of a dual phase (DP) steel with high martensite volume fraction. Microstructural analysis showed a mixture of ferrite, bainite, retained austenite and about 25–30 vol% of martensite in the TRIP steel. As a result of the strain induced transformation of retained austenite to martensite, the TRIP steel showed a strength elongation balance of 86% higher than that for the DP steel. In comparison to the commercial TRIP780 steel, the current TRIP steel showed a 15% higher ultimate tensile strength value while maintaining the same level of ductility. TRIP steel also had a larger work hardening exponent than DP steel at all strains.  相似文献   

3.
By using a static and high-speed material testing machine,tensile deformation behaviors of two kinds of SiMn TRIP(transformation induced plasticity)steels and DP(dual phase)steel were studied in a large range of strain rates(0.001-2 000s-1).Temperature variation during adiabatic heating and the amount of retained austenite at fracture were measured by an infrared thermometer and an X-ray stress analyser,respectively.The microstructure of steels was observed by optical microscopy(OM)and scanning electron microscopy(SEM)before and after tensile test.It was found from the experimental results that the tensile strength of these steels increased,and the fracture elongation firstly decreased and subsequently increased,as the strain rate increased in the range of 0.1-2 000s-1.The temperature raised during adiabatic heating of TRIP steel was in the range of 100-300℃,while that of the DP steel was in the range of 100-220 ℃.The temperature rise of these steels increased with increasing the strain rate,as well as the amount of the transformed retained austenite in TRIP steels.It was confirmed that austenite to martensite transformation is not suppressed by adiabatic heating.  相似文献   

4.
采用拉伸与测温试验同时进行的方法,将应力应变曲线与热能曲线相结合,动态研究热轧TRIP钢拉伸过程中的相变热.研究表明:热轧TRIP钢在拉伸过程中材料增加的热能由部分转变的塑性功和马氏体相变热组成,因此,拉伸过程中实际测得的试样热能高于由塑性功转变的热能.利用平均综合热能损失系数对低速拉伸的TRIP钢的热能进行补充,通过计算与推导,证实了试样在刚进入塑性变形时,一定数量的较不稳定残余奥氏体首先集中发生马氏体相变,随着应变的进一步加大,剩余的较稳定的残余奥氏体根据其稳定情况发生马氏体相变的数量逐渐减少,在试样均匀延伸结束前绝大部分残余奥氏体已转变为马氏体.结合相变热变化可动态描述热轧TRIP钢形变过程中马氏体相变的情况.   相似文献   

5.
Tensile mechanical behavior of cold rolled Si-Mn steel after TRIP (TRansformation Induced Plasticity) and DP (Dual Phase) treatment were investigated under different strain rates.The dynamic tensile test was carried out using the rotation disk bar-bar tensile impact apparatus.At static tension test condition,the values of total elongation for TRIP steel was approximately 2-3 times higher than DP steel because of TRIP effect;the DP steel showed a higher tensile strength because of 39.6vol% martensite in the matrix.The results of tension test at high strain rate condition were different.For the studied steel,the elongation increased with increasing strain rate due to softening of matrix caused by adiabatic heating;in addition,TRIP steel at low strain rate was always higher than that at high strain rate because progressive strain induced retained austenite was suppressed at high strain rate.  相似文献   

6.
 Mechanical properties and microstructure in high strength hot dip galvanizing TRIP steel were investigated by optical microscope (OM), transmission electron microscope (TEM), X-ray diffraction (XRD), dilatometry and mechanical testing. On the heat treatment process of different intercritical annealing (IA) temperatures, isothermal bainitic transformation (IBT) temperatures and IBT time, this steel shows excellent mechanical properties with tensile strength over 780 MPa and elongation more than 22%. IBT time is a crucial factor in determining the mechanical properties as it confirms the bainite transformation process, as well as the microstructure of the steel. The microstructure of the hot dip galvanizing TRIP steel consisted of ferrite, bainite, retained austenite and martensite during the short IBT time. The contents of ferrite, bainite, retained austenite and martensite with different IBT time were calculated. The results showed that when IBT time increased from 20 to 60 s, the volume of bainite increased from 14.31% to 16.95% and the volume of retained austenite increased from 13.64% to 16.28%; meanwhile, the volume of martensite decreased from 7.18% to 1.89%. Both the transformation induced plasticity of retained austenite and the hardening of martensite are effective, especially, the latter plays a dominant role in the steel containing 7.18% martensite which shows similar strength characteristics as dual-phase steel, but a better elongation. When martensite volume decreases to 1.89%, the steel shows typical mechanical properties of TRIP, as so small amount of martensite has no obvious effect on the mechanical properties.  相似文献   

7.
Formable high‐strength low‐alloy TRIP‐aided sheet steels with annealed martensite matrix or TRIP‐aided annealed martensitic steel were developed for automotive applications. The steels possessed a large amount of plate‐like retained austenite along annealed martensite lath boundary, the stability of which against the strain‐induced transformation was higher than that of the conventional TRIP‐aided dual‐phase steel with polygonal ferrite matrix. In a tensile strength range between 600 and 1000 MPa, the TRIP‐aided annealed martensitic steels exhibited superior large elongation and reduction of area. In addition, the steels possessed the same excellent stretch‐flangeability and bendability as TRIP‐aided bainitic steel with bainitic ferrite matrix. These properties were discussed by matrix structure, a strength ratio of second phase to matrix, retained austenite stability, internal stress in matrix and so on.  相似文献   

8.
新型TRIP钢热处理工艺初探   总被引:1,自引:0,他引:1  
新型TRIP复相钢仅含C、Si、Mn等合金元素,采用临界区等温淬火热处理工艺,获得铁素体、贝氏体和残余奥氏体三相组织。该钢在Ms-Md温度之间菜变,应变诱导相变,相变诱发塑性(TRIP),其力学性能指标特别是伸长率大幅度提高。  相似文献   

9.
The stability of retained austenite and the kinetics of the strain‐induced martensitic transformation in micro‐alloyed TRIP‐aided steel were obtained from interrupted tensile tests and saturation magnetization measurements. Tensile tests with single specimens and at variable temperature were carried out to determine the influence of the micro‐alloying on the Msσ temperature of the retained austenite. Although model calculations show that the addition of the micro‐alloying elements influences a number of stabilizing factors, the results indicate that the stability of retained austenite in the micro‐alloyed TRIP‐aided steels is not significantly influenced by the micro‐alloying. The kinetics of the strain‐induced martensitic transformation was also not significantly influenced by addition of the micro‐alloying elements. The addition of micro‐alloying elements slows down the autocatalytic propagation of the strain‐induced martensite due to the increase of the yield strength of retained austenite. The lower uniform elongation of micro‐alloyed TRIP‐aided steel is very likely due to the presence of numerous precipitates in the microstructure and the pronounced ferrite grain size refinement.  相似文献   

10.
Designing of alloy concept and process for DP,TRIP and TWIP steels stressing at martensite transformation are analyzed.For DP steel,austenite volume percent and its carbon content at different intercritical temperatures are calculated as well as the tensile strength of the steel,which meet well with the experimental result.The condition for dissolution of carbide is discussed by experiments and predicted by kinetic estimation.Several sample TRIP steels are prepared and their concentration profiles are calculated showing different diffusion characteristics of elements.Calculation also shows carbon enrichment is successful in this stage through the quick diffusion of carbon from ferrite to austenie.In order to maintain the austenite stability or to prevent precipitation of cementite,minimum cooling rate from the intercritical zone to over aging stage is obtained through kinetic simulation.Bainite transformation is estimated,which indicates the carbon rerichment from ferrite of bainite structure to austenite in this stage is also successful.Thermal HCP martensite transformation and the strain induced martensite transformation in TWIP steel is introduced.Relationship between transformation and mechanical properties in the steel is also mentioned.  相似文献   

11.
主要研究了高Al TRIP钢的显微组织与残余奥氏体的稳定性。通过光学显微镜、SEM、TEM观察了其微观组织。通过TEM观察了钢中马氏体与贝氏体的形貌。通过电子衍射斑分析,得出了残余奥氏体与马氏体的位向关系为K-S位向关系,奥氏体母相与贝氏体的位向关系为N-W位向关系。为研究残余奥氏体机械稳定性,对试验用钢进行了不同应变量的单向拉伸,用X射线测量了残余奥氏体体积分数。结果表明,真应变小于0.11时残余奥氏体体积分数随应变量增加而减少。真应变量大于0.11后,残余奥氏体体积分数随应变量增加变化不大。为了研究残余奥氏体热稳定性,将试验用钢冷却至不同的温度。发现高Al TRIP钢残余奥氏体热稳定性很高,深冷至-196℃条件下不发生马氏体转变。  相似文献   

12.
The stress‐strain response of TRIP 700 and DP 600 steels was studied at a wide range of strain rates and temperatures using a special high/low temperature tensile Hopkinson Split Bar (THSB) device. The mechanical properties of the studied steels, especially of the TRIP steel, were found to be strongly affected by both temperature and strain rate. The beneficial TRIP effect in the studied steel reached its maximum at temperatures between 75‐150 °C. The transformation behaviour of the retained austenite in the TRIP steel was studied by XRD, revealing that the phase transformation rate increases with decreasing temperature and decreases with increasing strain rate. A phenomenological numerical model was also presented to describe the behaviour of the TRIP and DP steels at different temperatures and strain rates.  相似文献   

13.
设计了不同相构成的超高强DH钢,抗拉强度均大于1300 MPa,组织由铁素体、马氏体、残留奥氏体和极少量碳化物构成。对比了不同相构成对超高强DH钢力学性能和应变硬化行为等的影响,并深入研究了残留奥氏体在超高强度DH钢中的作用机制。结果表明:随着马氏体和残留奥氏体体积分数的增大,铁素体体积分数的减小,实验钢屈服和抗拉强度同时升高,而延伸率呈先增大后减小趋势。软韧相铁素体体积分数的减小和硬相马氏体体积分数的增大导致屈服强度和抗拉强度增加。相对于回火马氏体,淬火马氏体对强度的提升更显著,在拉伸过程中转变的残留奥氏体的量是引起延伸率变化的主要原因,组织中显著的带状组织会造成颈缩后延伸率的明显降低。通过对应变硬化行为的分析表明,随着真应变的增大,应变硬化率呈减小的趋势,在真应变大于2%后的大范围内,对于应变硬化率,DH1>DH2>DH3,主要与铁素体体积分数有关;在真应变大于5.73%后,DH2钢的应变硬化率高于DH1钢和DH3钢,主要与DH2钢中更显著的TRIP效应有关。除了残留奥氏体体积分数,残留奥氏体中的碳含量对TRIP效应同样有显著的影响。较高比例的硬相马氏体组织结合适当比例的软韧相铁素体和残留奥氏体有助于DH2钢获得最良好的强塑积13.17 GPa·%,其中屈服强度达880 MPa,抗拉强度达1497 MPa,均匀延伸率为6.71%,总伸长率为8.8%,颈缩后延伸率为2.09%,屈强比0.59。   相似文献   

14.
TRIP sheet steels typically consist of ferrite, bainite, retained austenite, and martensite. The retained austenite is of particular importance because its deformation‐induced transformation to martensite contributes to excellent combinations of strength and ductility. While information is available regarding austenite response in uniaxial tension, less information is available for TRIP steels with respect to the forming response of retained austenite in complex strain states. Therefore, the purpose of this work was to study the austenite transformation behaviour in different strain paths by determining the amount of retained austenite before and after forming. Forming experiments were performed on a high strength 0.19C‐1.63Si‐1.59Mn TRIP sheet steel 1.2 mm in thickness in two different strain conditions, uniaxial tension (ε1 = ‐2ε2) and balanced biaxial stretching (ε1 = ε2). Specimens were formed to strains ranging from zero to approximately 0.2 effective (von Mises) strain. Specimens were tested both longitudinally and transverse to the rolling direction in uniaxial tension, and subtle mechanical property differences were found. The volume fraction of austenite, determined with X‐ray diffraction subsequent to forming, was found to decrease with increasing strain for both forming modes. Some modification in the crystallographic texture of the ferrite was observed with increasing strain, in specimens tested in the balanced biaxial stretch condition. This trend was not evident in the uniaxial tensile test results. Slight differences were found in the transformation behaviour of the austenite when formed in different strain conditions. More austenite transformed in specimens tested parallel to the rolling direction than transverse to the rolling direction in uniaxial tension. The amount of austenite transformed during biaxial stretching was determined to be greater than the amount transformed in uniaxial tension for specimens tested transverse to the rolling direction at an equivalent von Mises strain. The amount of austenite that transformed in biaxial tension, however, was comparable to the amount of austenite that transformed in specimens tested longitudinal to the rolling direction in uniaxial tension.  相似文献   

15.
16.
通过单轴热压缩试验,结合扫描电镜以及X射线衍射技术,研究了动态相变前奥氏体晶粒状态对基于动态相变的热轧Nb-V-Ti微合金化TRIP钢复相组织状态及力学性能的影响.与动态相变前奥氏体晶粒为等轴状条件下相比,动态相变前奥氏体晶粒为拉长状条件下,动态相变得到的铁素体转变量较大,最终复相组织中贝氏体含量较少且团径较小,马氏体含量较少,但对残余奥氏体含量及其含碳量影响不明显.与不含微合金化元素的基于动态相变的热轧TRIP钢相比,Nb-V-Ti微合金化TRIP钢的屈服强度和抗拉强度明显提高,而延伸率有所降低.   相似文献   

17.
In order to develop a comprehensive understanding about the effect of different holding time under rapid heating on the microstructural evolution and mechanical properties of transformation-induced plasticity (TRIP)steel, continuous annealing process simulations were performed using a thermal system with resistance heating method. The morphology and distribution of all phases present in the microstructure and the mechanical properties of TRIP steel were revealed.It appeared that the final tensile strength of the TRIP steel increased and retained austenite car-bon content decreased with increasing holding time.An overlap between ferrite recrystallization and austenitization was observed during intercritical holding.In addition,the work hardening of the samples was evaluated by calculat-ing the instantaneous n value as a function of the true strain.The difference in work hardening behavior corresponds to the rate of the retained austenite transformation during straining,which can be attributed to the carbon content and the morphology of the retained austenite.  相似文献   

18.
将Si-Mn系双相钢(DP钢)作为对比钢种,分析研究了高应变速率下600 MPa级Si-Mn系TRIP钢及含Al、Ni的1000 MPa级TRIP钢的显微组织及其动态力学性能.对DP钢而言,其抗拉强度随着应变速率的增大而升高,断裂延伸率则由于绝热温升的作用也呈上升趋势;对TRIP钢而言,随着应变速率的增大,其抗拉强度不断增大,断裂延伸率先减小后增大,但无法达到其静态拉伸时的塑性水平,这是由于在动态拉伸条件下奥氏体向马氏体的渐进式转变被抑制造成的.此外,在相同应变速率下测得的TRIP钢的绝热温升始终比DP钢高,而这部分高出的热量应当来自于在动态变形条件下TRIP钢中发生TRIP效应后释放的相变潜热.   相似文献   

19.
Development of TRIP aided ferrous alloys is one answer to the demand for weight decrease in the automotive industry. The microstructure of hot rolled and cold rolled TRIP steels is quite complex and the optimisation of such steel products requires a detailed understanding of the mechanisms of phase transformation, during thermomechanical treatment as well as during mechanical testing or metal forming. We present in this paper the results obtained at Irsid concerning the study of austenite stabilisation through bainitic transformation during thermal treatment and its transformation into martensite during mechanical testing. First of all, the characterisation methods are presented. An effort has to be put on this point due to the refinement of the microstructure of TRIP steels, especially the size of austenite and martensite islands. Carbon replicas for the observation by means of transmission electron microscopy (TEM) are used to analyse the morphological features of the microstructure ‐ nature of the constituents, size and shape ‐ and the composition of cementite particles present in the steels. The mean value for this carbon content in retained austenite is deduced from X‐ray diffraction measurements. Then the kinetics of bainitic transformation are discussed as well as cementite precipitation. The typical composition of the steel studied is 0.5 % C, 1.5 % Mn. The use of 0.5 % C steels facilitates the study of bainitic transformation by avoiding the ferrite formation usually occurring in TRIP steels. Cementite nucleation appears at the ferrite/austenite interface without any partitionning of substitutional elements. To satisfy thermodynamic equilibrium at the interface, the silicon content on the cementite side is very low and high on the austenite side. Then, carbon diffusion towards austenite is delayed and, as a consequence, cementite growth is also delayed. As the diffusion kinetics are low at 400 °C, cementite keeps this “non partitioned” composition, even after 3 hours holding. At 500 °C, diffusion kinetics are higher and cementite composition approaches that predicted by equilibrium. Finally, the stability of retained austenite during mechanical testing is studied. Before and after mechanical testing the morphological characteristics of the microstructure (austenite island size and elongation) are analysed by TEM replicas and image analysis. There is a high density of very small austenite islands but they represent only a small fraction of the total retained austenite. These results confirm and quantify the size effect on austenite stabilisation during deformation.  相似文献   

20.
Inthelasttwodecadesconsiderableefforthas beenputonthedevelopmentofhighstrengthsteels fortheautomotiveindustry.Themainaimistore ducecarweightbyincreasingthesteelstrength. Nowmoreandmoreattentionhasbeenpaidtohigh strengthtransformation inducedplasticity(TR…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号