首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过Gleeble 1500热模拟试验机和光学显微镜,研究了变形及冷却对700MPa级0.04C-0.27Mo-0.047Nb微合金化钢组织和硬度的影响。得出该钢的静态(不变形)和动态(变形)奥氏体连续冷却转变(CCT)曲线,高温转变区,相变产物为先共析铁素体和粒状贝氏体;中温转变区,相变产物主要为贝氏体。热变形促进了铁素体和贝氏体相变,扩大了形成铁素体的冷却速度范围,推迟了羽毛状贝氏体的形成。  相似文献   

2.
基于过冷奥氏体动态相变的思想,通过两道次压缩变形结合控制冷却的热模拟轧制工艺,获得不同贝氏体含量及形态的细晶铁素体贝氏体双相钢。通过显微组织观察及力学性能测试,考察了第二相贝氏体特征对双相钢室温拉伸变形行为的影响。研究结果表明,形变后快速冷却可获得无碳板条状贝氏体,较慢的冷速或在贝氏体转变区保温处理可获得粒状贝氏体。贝氏体体积分数大于20%左右的细晶铁素体/贝氏体双相钢具有低的屈服强度,高的抗拉强度,高的伸长率,低屈强比以及连续屈服特性。屈服强度既与铁素体晶粒尺寸相关,也与贝氏体形态和数量相关。板条贝氏体引起的屈服强度提高大于粒状贝氏体,粒状贝氏体具有比板条贝氏体更好的塑性。  相似文献   

3.
4.
A hot-rolled and controlled rolled 16MnCr5 steel was analyzed after similar industrial cooling conditions. The hot rolled steel had a ferrite–bainite microstructure whereas the controlled rolled steel had a ferrite–pearlite microstructure. The prior austenite grain size was found to be the controlling factor based on a cooling analysis. The effect of prior austenite grain size on the bainite start temperature had to be considered in the transformation model.  相似文献   

5.
奥氏体状态对 Mn-Cr 齿轮钢连续冷却相变组织的影响   总被引:1,自引:0,他引:1  
乔兵  王秉新  刘相华 《特殊钢》2005,26(3):25-27
使用Cleeblel500热模拟试验机研究了成分(%)为:0.23C,0.74Mn,0.90Cr 齿轮钢奥氏体晶粒尺 寸和变形(真应变量0.4)对连续冷却相变组织的影响和连续转变冷却(CCT)曲线。实验结果表明,当齿轮钢 未变形时,获得完全多边形铁素体+珠光体混合组织的临界冷速为0.5~1℃/s,冷速较快时,中温相变产物 由贝氏体及针状铁素体组成;奥氏体变形时,多边形铁素体相变开始温度升高,获得完全多边形铁素体+珠光 体混合组织冷速增大,为1~2℃/s,中温相变产物没有出现贝氏体,只有针状铁素体。  相似文献   

6.
The hot deformation behaviors and the microstructural evolution of plain C-Mn steels with similar contents of C and Si but different contents of Mn have been investigated by compressive processing using Gleeble-1500 mechanical simulator.Influence of Mn and hot deformation on continuous cooling transformation of steels has been studied.The experimental results showed that deformation in austenite region accelerated transformation process,and the extent is dependent on the hot deformation and cooling conditions.The hot deformation would promote transformation process,but the increase of transformation temperature is dependent on Mn contents.The results have also shown that the effect of deformation on ferrite transformation becomes more obvious with the increase of Mn content at relatively low cooling rate.  相似文献   

7.
For the purpose of achieving the reasonable rolling technology of 780 MPa hot‐rolled Nb‐Ti combined ultra‐high strength steel, the effect of deformation and microalloy elements Nb and Ti on phase transformation behaviors was investigated by thermal simulation experiment. The results indicated: the deformation promoted ferritic transformation; due to the carbon content of the experimental steel was lower (<0.12% wt), the deformation indirectly impacted perlitic transformation through promoting ferritic transformation; the effect of the deformation on bainitic transformation was subject to condition whether proeutectoid ferrite precipitated before bainitic transformation. At low cooling rate of 0.5 °C/s, Nb and Ti promote transformation process γ → α, but that not good for refining the ferrite grain; at high cooling rate of 25 °C/s, Nb and Ti to a certain extent promote bainitic transformation. The recrystallization stop temperature of experimental steel was greater than 1000 °C, and phase transformation point Ar3 was 764 °C. In order to obtain the fully bainite microstructure in the practical rolling process, the cooling rate should be controlled above 15 °C/s, the start finish rolling temperature between 950–980 °C, the finishing temperature between 830–850 °C, the coiling temperature between 450–550 °C.  相似文献   

8.
The evolution of lengthening rate of bainite sheaves during continuous cooling process in a Fe–C–Mn–Si superbainitic steel was investigated by in situ observation on high-temperature laser scanning confocal microscope. The lengthening rates of bainite sheaves in three temperature ranges were calculated. The results indicate that the lengthening rate of bainite sheaves continuously decreases with the decrease of temperature during continuous cooling process. The lengthening rate of bainite sheaf depends on undercooling, transformation temperature, the diffusion of carbon atoms and the carbon content in parent austenite etc. The lengthening rate at high temperature is large due to the favorable carbon diffusion, smaller carbon content and less plastic deformation in untransformed austenite. Additionally, the microstructures after different isothermal holding temperatures were analyzed, indicating that the larger lengthening rate of bainite sheaves due to the high isothermal transformation temperature does not mean more amount of bainite transformation. Lower bainitic transformation temperature results in more and finer bainite plates.  相似文献   

9.
The influence of hot deformation on the microstructure of a hot-rolled Si-Mn transformation-induced-plasticity (TRIP) steel was evaluated in an effort to better control retained austenite content. In this study, axial compressive strains varying in amounts from 0 to 60 pct were imposed in the austenite phase field, and effects on the formation of polygonal ferrite, bainite, and retained austenite were determined. In addition, modifications in simulated coiling temperature from 420 °C to 480 °C and cooling rates from the rolling temperature, between 10 °C/s and 35 °C/s, were assessed. Fast cooling rates, low coiling temperatures, and low degrees of hot deformation were generally found to decrease the amount of polygonal ferrite and increase retained austenite fraction. Unexpectedly, a sharp increase in polygonal ferrite content and decrease in retained austenite content occurred when the fastest cooling rate, 35 °C/s, was coupled with extensive hot deformation and high coiling temperatures. This effect is believed to be due to insufficient time for full recovery and recrystallization of the deformed austenite, even in the absence of intentional microalloying additions to control recrystallization kinetics. The resultant decrease in hardenability allowed the ferrite transformation to continue into the holding time at high (simulated) coiling temperatures.  相似文献   

10.
 The effect of compressive deformation of austenite on continuous cooling transformation microstructures for 22CrSH gear steel has been investigated using a Gleeble 1500 thermal simulator. The experimental results show that the deformation of austenite promotes the formation of proeutectoid ferrite and pearlite, and leads to the increase of critical cooling rate of proeutectoid ferrite plus pearlite microstructure. The grain boundary allotriomorphic ferrite occupies the austenite grain surfaces when the prior deformation takes place or the cooling rate is decreased, which causes a transition from bainite to acicular ferrite. The deformation enhances the stability of transformation from austenite to acicular ferrite, which results in an increase of M/A constituent.  相似文献   

11.
 借助MMS-300热模拟试验机研究了控轧温度区间、终冷温度、贝氏体区等温处理以及冷却路径对微合金化热轧TRIP钢组织演变规律的影响。结果表明,随着控轧温度区间“下调”,组织中的铁素体晶粒越来越细小,铁素体量逐渐增加,残余奥氏体量则先增加后减少。终冷温度升高时,组织中的残余奥氏体量也呈现出先增加后减少的变化趋势,而贝氏体温度范围等温时间的延长使残余奥氏体量增加。相对于“缓冷+快冷”,轧后采用“快冷+缓冷+超快冷”冷却路径更有助于铁素体晶粒的细化和奥氏体的残留。在“快冷+缓冷+超快冷”冷却路径下,当控轧温度区间为900~840℃,缓冷温度范围为710~680℃,贝氏体等温处理制度为450℃×5min时,组织中的残余奥氏体量达到最高值113%。  相似文献   

12.
Based on thermodynamics and kinetics, a new mathematical model was developed to calculate the CCT diagrams and the transformation kinetics in low carbon niobium steels, in which the effect of deformation on the degree of supercooling was taken into account. The undercooling caused by deformation is the major reason for the increase of the starting transition temperature during continuous cooling. The critical cooling rate of bainite formation is within 2--5 ℃s for the studied niobium steels and deformation is suitable for the occurrence of pearlite. The ferrite volume fraction increases with the increase of the austenite boundary area, and decreases with the increase of the cooling rate. The calculated CCT diagrams and the volume fraction of each phase are in good agreement with the measurements.  相似文献   

13.
The γ‐α transformation and final microstructure in pipeline steel was studied by carrying out a number of physical simulations of industrial hot rolling schedules. Particularly, the effect of the reheating temperature, deformation and cooling parameters on the transformation temperatures and final grain size were considered with a goal to obtain an appropriate thermo‐mechanical processing route which will generate appropriate microstructures for pipeline applications. The CCT diagram of the steel was derived experimentally by means of dilatometric tests. Hot torsion experiments were applied in a multi‐deformation cycle at various temperatures in the austenite region to simulate industrial rolling schedules. By variation of the reheating temperature, equivalent strain, and accelerated cooling, different types of microstructures were obtained. It was found that the deformation increases the transformation temperatures whereas the higher cooling rates after deformation decrease them. Post‐deformation microstructure consists of fine bainitic‐ferrite grains with dispersed carbides and small amount of dispersed martensite/austenite islands which can be controlled by varying the reheating temperature, deformation and post‐deformation cooling. The detailed microstructure characteristics obtained from the present work could be used to optimize the mechanical properties, strength and toughness of pipeline steel grades by an appropriate control of the thermo‐mechanical processing.  相似文献   

14.
The continuous cooling transformation behavior, the effect of coiling temperature on microstructure and mechanical properties, and strengthening mechanisms of Ti microalloyed high strength hot strip steel were systematically investigated by thermal simulation testing machine, laboratory rolling mill, SEM and HR-TEM. The dynamic CCT curve was established. The results show that the austenite to ferrite and pearlite transformation takes place when the cooling rate is less than 1??/s. The austenite to bainite transformation accompanied with austenite to ferrite and pearlite transformation takes place when the cooling rate is in the range of 5 ??/s to 10 ??/s. The bainitic transformation temperature is about 600??. The amount of granular bainite decreases, while the amount of lath bainite increases with the increase of cooling rate in the range of 20??/s to 50??/s. Furthermore, the study on the effect of coiling temperature on the microstructure and mechanical properties of experimental steel has shown that the strength and plasticity of tested steel are improved with decreasing the coiling temperature. When the coiling temperature is 550?棬the experimental steel possesses optimal mechanical properties owing to the grain refinement and precipitation of nano-scale TiC particles. And the tensile strength, yield strength and elongation of tested steel were 742MPa, 683MPa and 22??5%, respectively.  相似文献   

15.
Effects of deformation mode, deformation temperature, deformation rate, cooling rate and slow- cooling stop temperature on the transformation behavior of hot- rolled microalloyed TRIP steel were studied by means of MMS- 300 thermomechanical simulator. The results show that for the samples subjected to the single or double pass deformation, ferrite transformation area is expanded, pearlite transformation area appears, and martensite transformation area disappears in the continuous cooling transformation diagrams. Transformation temperatures of Ar3, Bs and Bf decrease, diffusional transformation is prevented and intermediate temperature transformation is promoted with the increase of deformation temperature or cooling rate. When deformation temperature is 850??, transformation temperatures of Ar3, Bs and Bf increase, the amount of ferrite also increases, and the amount of bainite decreases in the microstructure with the increase of deformation rate. With the decrease of slow- cooling stop temperature, ferrite amount increases, ferrite grains grow and retained austenite amount first increases and then decreases.  相似文献   

16.
直接热轧法制备Cu-P-Cr-Ni-Mo双相耐候钢   总被引:1,自引:0,他引:1  
张春玲  蔡大勇  廖波 《钢铁》2012,47(7):84-88
 在商用09CuPCrNi耐候钢化学成分的基础上,通过调整合金元素含量,研制出了可直接热轧双相化的Cu-P-Cr-Ni-Mo耐候钢。该钢种变形奥氏体的CCT曲线具有较宽的铁素体析出区,可作为热轧“可行的速度窗口”;铁素体析出区与贝氏体转变区之间存在约80℃的奥氏体亚稳区,可作为热轧“可行的卷取范围”;贝氏体转变区的右侧端部封口,可避免在卷取过程中发生贝氏体转变。根据Cu-P-Cr-Ni-Mo耐候钢的变形奥氏体的CCT曲线,制定了5种热轧双相化工艺,并采用Gleeble-3500热模拟机进行了轧制模拟,制备出了Cu-P-Cr-Ni-Mo热轧双相耐候钢。不同工艺下获得的双相耐候钢组织均为铁素体基体及其上呈岛状分布的马氏体,马氏体体积分数为17%~28%。  相似文献   

17.
The current status of developing a fundamental model for describing the overall austenite decomposition kinetics to ferrite and carbide‐free bainite in low carbon TRIP steels alloyed with Mn and Si is reviewed. For ferrite growth, a model is proposed where both interface and carbon diffusion‐controlled ferrite formation are considered in a mixed‐mode approach. The kinetic model is coupled with Thermocalc to obtain necessary thermodynamic information. Spherical geometry with an outer ferrite shell is assumed to capture in a simple way the topological conditions for growth. The mixed‐mode modelling philosophy has been identified to permit a rigorous incorporation of the solute drag effect of substitutional alloying elements, in particular Mn. The Purdy‐Brechet solute drag theory is adopted to characterize the interaction of Mn with the moving austenite‐ferrite interface. The challenges of quantifying the required solute drag parameters are discussed with an emphasis on a potential solute drag interaction of Mn and Si. The model is extended to non‐isothermal processing paths to account for continuous and stepped cooling occurring on the run‐out table of a hot strip mill or on a continuous annealing line. The transformation start temperature during cooling is predicted with a model combining nucleation and early growth which had previously been validated for conventional low carbon steels. The overall model is evaluated by comparing the predictions with experimental data for the ferrite growth kinetics during continuous cooling of a classical TRIP steel with mass contents of 0.19 % C, 1.49 % Mn and 1.95 % Si. Extension of the model to include bainite formation remains a challenge. Both diffusional and displacive model approaches are discussed for the formation of carbide‐free bainite. It is suggested to develop a combined nucleation and growth model which would enable to capture a potential transition from a diffusional to a displacive transformation mode with decreasing temperature.  相似文献   

18.
利用Thermecmastor-Z型热模拟试验机,结合金相显微镜(OM)、扫描电镜(SEM)、维氏硬度计等,系统研究了奥氏体区变形对50CrV4钢连续冷却相变和等温相变规律的影响。建立了试验钢动态CCT曲线。研究结果表明,奥氏体变形能促进连续冷却转变过程中铁素体-珠光体、贝氏体转变,但亦可提高奥氏体的机械稳定性,进而抑制马氏体转变,Ms点由331.6℃(奥氏体未变形)降低至291℃(950℃下变形50%+890℃下变形50%,变形速率均为5s-1,变形后冷速为20℃/s)。当轧后冷速小于0.5℃/s时,试验钢中可获得铁素体+珠光体组织。此外,在研究不同变形量对试验钢等温相变规律影响时发现,650℃等温时,试验钢中发生铁素体-珠光体相变。随着变形量的增加(由30%增加至50%),其等温相变动力学加快(相变完成时间由197.6s减小至136.5s),铁素体体晶粒尺寸、珠光体片层间距减小,硬度增加。  相似文献   

19.
孙磊磊  柏明卓  郑磊 《钢铁》2014,49(9):81-86
 铁素体-贝氏体双相组织钢能够通过软硬相协调屈服抵抗大变形,这是基于应变设计管线钢的研究热点。为探究生产工艺对双相组织形态的影响规律,利用Gleeble-3800热模拟试验机,通过压缩试验模拟轧制和冷却,研究了两阶段冷却工艺对基于应变设计X70管线钢形变奥氏体组织转变的影响。结果表明:一阶段缓冷后的待温处理使铁素体形核温度降低,有效提高了铁素体形核率,起到细化晶粒作用;降低二阶段快冷开冷温度可以增加铁素体析出时间,从而增加铁素体的含量;二阶段快冷中,提高冷却速率和降低终冷温度均可细化贝氏体组织的板条间距以及板条间的碳化物,提高了贝氏体显微维氏硬度。  相似文献   

20.
利用OM、SEM、XRD、EBSD和室温拉伸试验机等研究了CSP热轧TRIP钢中间缓冷时间及贝氏体等温时间对组织和力学性能的影响。结果表明,随着中间缓冷时间的延长,试验钢中的铁素体和残余奥氏体体积分数增加,贝氏体体积分数减少;抗拉强度基本不变,屈服强度逐渐降低,断后伸长率和强塑积变化不明显。中间缓冷时间为6 s时,可满足CSP产线的要求。对贝氏体相变时间的研究表明,当等温时间为15 min时,试验钢中的残余奥氏体主要分布于铁素体/铁素体界面、铁素体/贝氏体界面以及贝氏体中,体积分数约为7.1%,表现出良好的TRIP效应。其抗拉强度、屈服强度、断后伸长率和强塑积分别达到744.0 MPa、522.5 MPa、29.3%和21.8 GPa·%,力学性能最优。当等温时间延长至50 min时,试验钢中的贝氏体含量增加,残余奥氏体体积分数减少至2.7%,强塑积明显下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号