首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To examine the effect of trehalose accumulation on response to saline stress in Saccharomyces cerevisiae, we constructed deletion strains of all combinations of the trehalase genes ATH1, NTH1 and NTH2 and examined their growth behaviour and intracellular trehalose accumulation under non‐stress and saline‐stress conditions. Saline stress was induced in yeast cells by NaCl addition at the exponential growth phase. All deletion strains showed similar specific growth rates and trehalose accumulation to their parent strain under non‐stress conditions. However, under the saline stress condition, one single deletion strain, nth1Δ, two double deletion strains, nth1Δ ath1Δ and nth1Δ nth2Δ, and the triple deletion strain nth1Δnth2Δ ath1Δ, all of which carry the nth1Δ deletion, showed increased trehalose accumulation as compared to the parent and other deletion strains. In particular, our statistical analysis revealed that the triple deletion strain showed a higher growth rate under the saline stress condition than the parent strain. Moreover, some deletion strains showed further trehalose accumulation under non‐stress conditions by overexpression of the TPS1 or TPS2 genes encoding the enzymes related to trehalose biosynthesis at the mid‐exponential phase. Such increased trehalose accumulation prior to NaCl addition could improve the growth of these strains under saline stress. Our results indicate that high trehalose accumulation prior to NaCl addition, rather than after NaCl addition, is necessary to achieve high growth activity under stress conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Cation–chloride co‐transporters serve to transport Cl and alkali metal cations. Whereas a large family of these exists in higher eukaryotes, yeasts only possess one cation–chloride co‐transporter, Vhc1, localized to the vacuolar membrane. In this study, the human cation–chloride co‐transporter NKCC2 complemented the phenotype of VHC1 deletion in Saccharomyces cerevisiae and its activity controlled the growth of salt‐sensitive yeast cells in the presence of high KCl, NaCl and LiCl. A S. cerevisiae mutant lacking plasma‐membrane alkali–metal cation exporters Nha1 and Ena1‐5 and the vacuolar cation–chloride co‐transporter Vhc1 is highly sensitive to increased concentrations of alkali–metal cations, and it proved to be a suitable model for characterizing the substrate specificity and transport activity of human wild‐type and mutated cation–chloride co‐transporters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Wickerhamomyces anomalus killer strains are important for fighting pathogenic yeasts and for controlling harmful yeasts and bacteria in the food industry. Targeted disruption of key genes in β‐glucan synthesis of a sensitive Saccharomyces cerevisiae strain conferred resistance to the toxins of W. anomalus strains BS91, BCA15 and BCU24 isolated from olive brine. Competitive inhibition of the killing activities by laminarin and pustulan refer to β‐1,3‐ and β‐1,6‐glucans as the main primary toxin targets. The extracellular exoglucanase‐encoding genes WaEXG1 and WaEXG2 from the three strains were sequenced and were found to display noticeable similarities to those from known potent W. anomalus killer strains. Accession Nos for WaEXG1 genes for the strains in brackets are JQ734563 (BS91), JQ734564 (BCA15) and JQ734565 (BCU24); for WaEXG2 genes JQ734566 (BS91), JQ734567 (BCA15) and JQ734568 (BCU24), respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Pichia pastoris is a common host organism for heterologous protein expression and metabolic engineering. Zeocin‐, G418‐, nourseothricin‐ and blasticidin‐resistance genes are the only dominant selectable markers currently available for selecting P. pastoris transformants. We describe here new P. pastoris expression vectors that confer a hygromycin resistance base on the Klebsiella pneumoniae hph gene. To demonstrate the application of the vectors for intracellular and secreted protein expression, green fluorescent protein (GFP) and human serum albumin (HSA) were cloned into the vectors and transformed into P. pastoris cells. The resulting strains expressed GFP and HSA constitutively or inducibly. The hygromycin resistance marker was also suitable for post‐transformational vector amplication (PTVA) for obtaining strains with high plasmid copy numbers. A strain with multiple copies of the HSA expression cassette after PTVA had increased HSA expression compared with a strain with a single copy of the plasmid. To demonstrate compatibility of the new vectors with other vectors bearing antibiotic‐resistance genes, P. pastoris was transformed with the Saccharomyces cerevisiae genes GSH1, GSH2 or SAM2 on plasmids containing genes for resistance to Zeocin, G418 or hygromycin. The resulting strain produced glutathione and S‐adenosyl‐l ‐methionine at levels approximately twice those of the parent strain. The new hygromycin‐resistance vectors allow greater flexibility and potential applications in recombinant protein production and other research using P. pastoris. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
8.
A single‐step PCR‐based epitope tagging enables fast and efficient gene targeting with various epitope tags. This report presents a series of plasmids for the E2 epitope tagging of proteins in Saccharomyces cerevisiae and Schizosaccharomyces pombe. E2Tags are 10‐amino acids (epitope E2a: SSTSSDFRDR)‐ and 12 amino acids (epitope E2b: GVSSTSSDFRDR)‐long peptides derived from the E2 protein of bovine papillomavirus type 1. The modules for C‐terminal tagging with E2a and E2b epitopes were constructed by the modification of the pYM‐series plasmid. The N‐terminal E2a and E2b tagging modules were based on pOM‐series plasmid. The pOM‐series plasmids were selected for this study because of their use of the Cre–loxP recombination system. The latter enables a marker cassette to be removed after integration into the loci of interest and, thereafter, the tagged protein is expressed under its endogenous promoter. Specifically for fission yeast, high copy pREP plasmids containing the E2a epitope tag as an N‐terminal or C‐terminal tag were constructed. The properties of E2a and E2b epitopes and the sensitivity of two anti‐E2 monoclonal antibodies (5E11 and 3F12) were tested using several S. cerevisiae and Sz. pombe E2‐tagged strains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
In addition to two genes (ENO1 and ENO2) known to code for enolase (EC4.2.1.11), the Saccharomyces cerevisiae genome contains three enolase‐related regions (ERR1, ERR2 and ERR3) which could potentially encode proteins with enolase function. Here, we show that products of these genes (Err2p and Err3p) have secondary and quaternary structures similar to those of yeast enolase (Eno1p). In addition, Err2p and Err3p can convert 2‐phosphoglycerate to phosphoenolpyruvate, with kinetic parameters similar to those of Eno1p, suggesting that these proteins could function as enolases in vivo. To address this possibility, we overexpressed the ERR2 and ERR3 genes individually in a double‐null yeast strain lacking ENO1 and ENO2, and showed that either ERR2 or ERR3 could complement the growth defect in this strain when cells are grown in medium with glucose as the carbon source. Taken together, these data suggest that the ERR genes in Saccharomyces cerevisiae encode a protein that could function in glycolysis as enolase. The presence of these enolase‐related regions in Saccharomyces cerevisiae and their absence in other related yeasts suggests that these genes may play some unique role in Saccharomyces cerevisiae. Further experiments will be required to determine whether these functions are related to glycolysis or other cellular processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
11.
12.
We report the construction of Saccharomyces cerevisiae strains isogenic to W303‐1a that are designed to allow efficient genetic analysis. To facilitate the generation of null alleles of target genes by PCR‐mediated gene disruption, we constructed designer deletion alleles of the ARG4, TRP1 and URA3 genes. In addition, a single pair of oligonucleotide primers were designed that can be used to amplify any of several marker genes for use in PCR‐mediated gene disruption. A new version of the ‘reusable’ hisG‐URA3‐hisG cassette was constructed for use in PCR‐mediated gene disruption. Finally, to facilitate the formation of isogenic diploids by selection, we constructed strains that contain combinations of wild‐type alleles of ADE2, HIS3, LEU2, TRP1 and URA3. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
Shochu is a traditional Japanese distilled spirit. The formation of the distinguishing flavour of shochu produced in individual distilleries is attributed to putative indigenous yeast strains. In this study, we performed the first (to our knowledge) phylogenetic classification of shochu strains based on nucleotide gene sequences. We performed phylogenetic classification of 21 putative indigenous shochu yeast strains isolated from 11 distilleries. All of these strains were shown or confirmed to be Saccharomyces cerevisiae, sharing species identification with 34 known S. cerevisiae strains (including commonly used shochu, sake, ale, whisky, bakery, bioethanol and laboratory yeast strains and clinical isolate) that were tested in parallel. Our analysis used five genes that reflect genome‐level phylogeny for the strain‐level classification. In a first step, we demonstrated that partial regions of the ZAP1, THI7, PXL1, YRR1 and GLG1 genes were sufficient to reproduce previous sub‐species classifications. In a second step, these five analysed regions from each of 25 strains (four commonly used shochu strains and the 21 putative indigenous shochu strains) were concatenated and used to generate a phylogenetic tree. Further analysis revealed that the putative indigenous shochu yeast strains form a monophyletic group that includes both the shochu yeasts and a subset of the sake group strains; this cluster is a sister group to other sake yeast strains, together comprising a sake‐shochu group. Differences among shochu strains were small, suggesting that it may be possible to correlate subtle phenotypic differences among shochu flavours with specific differences in genome sequences. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
A key mechanism of signal transduction in eukaryotes is reversible protein phosphorylation, mediated through protein kinases and protein phosphatases (PPases). Modulation of signal transduction by this means regulates many biological processes. Saccharomyces cerevisiae has 40 PPases, including seven protein phosphatase 2C (PP2C PPase) genes (PTC1–PTC7). However, their precise functions remain poorly understood. To elucidate their cellular functions and to identify those that are redundant, we constructed 127 strains with deletions of all possible combinations of the seven PP2C PPase genes. All 127 disruptants were viable under nutrient‐rich conditions, demonstrating that none of the combinations induced synthetic lethality under these conditions. However, several combinations exhibited novel phenotypes, e.g. the Δptc5Δptc7 double disruptant and the Δptc2Δptc3Δptc5Δptc7 quadruple disruptant exhibited low (13°C) and high (37°C) temperature‐sensitive growth, respectively. Interestingly, the septuple disruptant Δptc1Δptc2Δptc3Δptc4Δptc5Δptc6Δptc7 showed an essentially normal growth phenotype at 37°C. The Δptc2Δptc3Δptc5Δptc7 quadruple disruptant was sensitive to LiCl (0.4 m ). Two double disruptants, Δptc1Δptc2 and Δptc1Δptc4, displayed slow growth and Δptc1Δptc2Δptc4 could not grow on medium containing 1.5 m NaCl. The Δptc1Δptc6 double disruptant showed increased sensitivity to caffeine, congo red and calcofluor white compared to each single deletion. Our observations indicate that S. cerevisiae PP2C PPases have a shared and important role in responses to environmental stresses. These disruptants also provide a means for exploring the molecular mechanisms of redundant PTC gene functions under defined conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Previous research has shown that high levels of Cu2+ inhibit the growth of yeast and induce sluggish fermentation, resulting in a decrease in alcohol production. Little data are available on the effects of copper on the cell morphology, especially the surface elasticity of Saccharomyces cerevisiae. This work investigated the effects of Cu2+ (0.5, 1.0 and 1.5 mm ) on the growth, surface characteristics and elasticity of two strains of S. cerevisiae in a low sugar model synthetic medium. The results indicated that high levels of Cu2+ retarded the growth rate of S. cerevisiae and reduced the utilisation of reducing sugars. Cells showed intercellular adhesion, became small and deformed, and the surface was uneven and rough after the adsorption of Cu2+. The Young's modulus also decreased with an increase in the concentration of Cu2+, indicating that the cells had softened. This study reveals the response mechanism of S. cerevisiae under copper stress by altering cellular morphology and mechanical properties.  相似文献   

16.
The potential applications of wild yeast strains with β‐glucosidase activity were investigated by assaying their enzymatic production under simulated oenological conditions, coupled with the exploration of the potential applications of the β‐glucosidases by studying the enzymatic activity and stability under similar oenological conditions. The assay of enzymatic locations revealed that the β‐glucosidase activities from these wild strains occurred in the extracellular fraction, and in whole and permeabilized cells. The effects of different oenological factors on β‐glucosidase production indicated that the F6 Trichosporon asahii strain had higher β‐glucosidase production than the other strains under low pH conditions. However, the F35 Hanseniaspora uvarum strain and the F30 Saccharomyces cerevisiae strain showed higher β‐glucosidase production under high‐sugar conditions. Furthermore, the influence of oenological factors on the activity and stability of the β‐glucosidases revealed that the enzyme from the F6 T. asahii strain had a stronger low‐pH‐value resistance than the other yeast β‐glucosidases. These results suggest that the F35 H. uvarum, F30 S. cerevisiae and the F6 T. asahii β‐glucosidases may have some potentially applicable values in the fermentation industry. Copyright © 2015 The Institute of Brewing & Distilling  相似文献   

17.
The molecular mechanisms of action of volatile anaesthetics remain unknown despite clinical use for over 150 years. While many effects of these agents have been characterized, clear insight into how these effects relate to the physiological state of anaesthesia has not been established. Volatile anaesthetics arrest cell division in Saccharomyces cerevisiae in a manner that parallels the anaesthetic actions of these drugs in mammals. To gain additional insight into the cellular activities of these drugs, we isolated genes that, when present on multi‐copy plasmids, render S. cerevisiae resistant to the volatile anaesthetic isoflurane. One of these genes, RRD1, encodes a subunit of the Tap42p–Sit4p–Rrd1p phosphatase complex that functions in the target of rapamycin complex 1 (TORC1) signalling pathway. In addition, we show that mutations in two other genes encoding components of the TORC1 pathway, GLN3 and URE2, also affect yeast anaesthetic response. These findings suggest that TORC1‐mediated signalling is involved in cellular response to volatile anaesthetics in S. cerevisiae. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Fission yeast genes identified in genetic screens are usually cloned by transformation of mutants with plasmid libraries. However, for some genes this can be difficult, and positional cloning approaches are required. The mutation swi5‐39 reduces recombination frequency in homozygous crosses and has been used as a tool in mapping gene position (Schmidt, 1993 ). However, strain construction in swi5‐39‐based mapping is significantly more laborious than is desirable. Here we describe a set of strains designed to make swi5‐based mapping more efficient and more powerful. The first improvement is the use of a swi5Δ strain marked with kanamycin (G418) resistance, which greatly facilitates identification of swi5 mutants. The second improvement, which follows directly from the first, is the introduction of a large number of auxotrophic markers into mapping strains, increasing the likelihood of finding close linkage between a marker and the mutation of interest. We combine these new mapping strains with a rec12Δ‐based approach for initial mapping of a mutation to an individual chromosome. Together, the two methods allow an approximate determination of map position in only a small number of crosses. We used these to determine that mod22‐1, a modifier of microtubule nucleation phenotypes, encodes a truncation allele of Swr1, a chromatin‐remodelling factor involved in nucleosomal deposition of H2A.Z histone variant Pht1. Expression microarray analysis of mod22‐1, swr1Δ and pht1Δ cells suggests that the modifier phenotype of mod22‐1 mutants may be due to small changes in expression of one or more genes involved in tubulin function. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Diet plays a key role in determining the longevity of the organisms since it has been demonstrated that glucose restriction increases life span whereas a high‐glucose diet decreases it. However, the molecular basis of how diet leads to the aging process is currently unknown. We propose that the quantity of glucose that fuels respiration influences reactive oxygen species generation and glutathione levels, and both chemical species impact in the aging process. Herein, we provide evidence that mutation of the gene GSH1 in Saccharomyces cerevisiae diminishes glutathione levels. Moreover, glutathione levels were higher with 0.5% than in 10% glucose in the gsh1Δ and wild‐type strains. Interestingly, the chronological life span was lowered in the gsh1Δ strain cultured with 10% glucose but not under dietary restriction. The gsh1Δ strain also showed inhibition of the mitochondrial respiration in 0.5 and 10% glucose but only increased the H2O2 levels under dietary restriction. These results correlate well with the GSH/GSSG ratio, which showed a decrease in gsh1Δ strain cultured with 0.5% glucose. Together, these data indicate that glutathione exhaustion impact negatively both the electron transport chain function and the chronological life span of yeast, the latter occurring when a low threshold level of this antioxidant is reached, independently of the H2O2 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号