首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High power impulse magnetron sputtering (HIPIMS) pulses have been of great interest over the last decade. With such sputtering techniques a substantial amount of target material can be ionized and used for the engineering of surfaces and coatings. Depending on voltage, system configuration and target material, such discharges can be either transient or reach steady state currents during the pulse. The used HIPIMS power supply was a constant voltage supplies. Similarly, HIPIMS pulses with multiple steady state current phases can be generated using a modulated pulsed power (MPP) generator. A typical pulse consists of an ignition, low current and high current phase. The contribution of these phases to the deposition rate is presented. The ionization rate of single charge chromium ions has been found to increase linearly with increasing peak current density. An increase in deposition rate with lower magnetic field strength at the target surface can be attributed to a higher sputter yield due to a higher cathode voltage due to increasing system impedance in HIPIMS case, weaker trapping of deposition flux and to enhanced ion flux towards the substrate.  相似文献   

2.
This study addresses the DC-magnetron sputtering (DCMS) of Ag-films on polyester and compares the results found for the E. coli inactivation with the inactivation obtained when applying highly ionized pulse plasma power magnetron sputtering (HIPIMS). The amounts of Ag needed to inactivate E. coli by HIPIMS sputtering were an order of magnitude lower than with DCMS indicating a significant saving of noble metal and concomitantly a faster E. coli inactivation was observed compared to samples sputtered with DCMS. Higher current densities applied with DCMS led to shorter E. coli inactivation times and this trend was observed also for HIPIMS sputtered samples. By DCMS the thicker layers needed to inactivate E. coli comprised slightly larger Ag-aggregates compared to the thinner Ag-layers sputtered by HIPIMS to inactivate E. coli within short times. Longer sputtering times by DCMS and HIPIMS lead to optically darker Ag-deposits reaching the absorption edge of silver absorption of ~ 1000 nm. Mass spectroscopic analyses indicated that HIPIMS produced a much higher amount of Ag1+ and Ag2+ compared to DCMS due to the higher peak discharge current employed in the former case.  相似文献   

3.
High power impulse magnetron sputtering (HIPIMS) of an Al target in Ar/O2 mixtures has been studied. The use of HIPIMS is shown to drastically influence the process characteristics compared to conventional sputtering. Under suitable conditions, oxide formation on the target as the reactive gas flow is increased is suppressed, and the hysteresis effect commonly observed as the gas flow is varied during conventional sputtering can be reduced, or even completely eliminated, using HIPIMS. Consequently, stoichiometric alumina can be deposited under stable process conditions at high rates. Possible explanations for this behavior as well as a model qualitatively describing the process are presented.  相似文献   

4.
In this paper, the metal to ceramic transition of the Al-N2 system was investigated using classical reactive pulsed-DC magnetron sputtering and HIgh Power Impulse Magnetron Sputtering (HIPIMS) at a constant average current of 3 A. Optical emission spectroscopy measurements revealed more ionised aluminium species in the HIPIMS discharge compared to pulsed-DC sputtering. It also showed excited N0 and ionised N+ species in reactive Ar/N2 HIPIMS discharges. The corresponding evolution of the consumed nitrogen flow as a function of the N2 partial pressure revealed that a higher amount of reactive gas is needed to achieve stoichiometric AlN with HIPIMS. Electron probe micro-analysis and X-ray diffraction measurements confirmed that a partially poisoned aluminium target is enough to allow the deposition of stoichiometric hcp-AlN thin films via HIPIMS. To go further in the comparison of both processes, two stoichiometric hexagonal aluminium nitride thin films have been deposited. High power impulse magnetron sputtered hcp-AlN exhibits a higher nano-hardness (18 GPa) than that of the coating realised with conventional pulsed-DC sputtering (8 GPa).  相似文献   

5.
Surface modification with high-power glow discharges is a promising physical vapor deposition (PVD) technology for industrial usage. A metal ion density higher than 1018 m−3 can be obtained due to a high-power input in the plasma. In the present paper, titanium films were deposited on Si (100) substrates using high-power impulse magnetron sputtering (HIPIMS). The pulse duration was varied to investigate the deposition rate and the titanium film structure. The plasma source was an unbalanced magnetron sputtering (UBMS) discharge generation system. The deposition rate was correlated to the electrical characteristics. There was an instantaneous power threshold of approximately 36 kW to significantly increase the deposition rate by 4-5 times. The deposition rate increased linearly with respect to the average power until the average power reached 5.6 kW (about 30 W/cm2 for a total area of the target), and an 83% increase of the deposition rate from the linear relationship was observed. The increase of the deposition rate was possibly closely related to the so-called thermal spike, where the target temperature increases due to a high power input to the target. The surface morphology and the crystalline structure of the films were studied for a variety of pulse durations, and the results were compared to the case of the direct-current magnetron sputtering (dcMS) process. The titanium films at an average power of 1.2 kW and a pulse duration of 50 μs have a smaller crystalline size and a smoother surface than those at an average power of 825 W by dcMS. The crystal orientation (101) was dominated when the pulse duration was lengthened to 180 μs, although the (002) orientation was dominant in dcMS. The crystal size and the surface roughness increased significantly when the pulse duration was increased from 50 μs to 180 μs in HIPIMS. The consumed power in the plasma by HIPIMS can be an important parameter for the crystal size and the structure.  相似文献   

6.
High Power Impulse Sputtering (HIPIMS) has received increasing attention as a new sputtering technique. The main feature of the HIPIMS process is the high ionization percentages in the sputter flux. This can be used for film densification, surface modification, trench filling and other applications. Layers produced with HIPIMS show superior properties in many applications. The most investigated and promising HIPIMS application is for hard coatings in wear and corrosion protection (e.g., CrN or TiN). This application and the related coating equippment has been discussed in detail by W.‐D. Münz in a previous issue [1]. The significantly lower heat transfer to the substrate compared to standard magnetron sputtering is another advantage of the HIPIMS process. This enables high rate coating even on temperature sensitive substrates. HIPIMS also significantly changes the hysteresis curve in reactive sputtering, offering a much easier control of the reactive process. HIPIMS power supplies can be added to existing sputter systems with little or no system modification. By this way the process capability can be extended easily. Production power supplies with pulse energies up to 16MW and pulse frequencies up to 1 kHz are available. Design and features of these power supplies are discussed in this article.  相似文献   

7.
We have deposited Ti-Si-C thin films using high-power impulse magnetron sputtering (HIPIMS) from a Ti3SiC2 compound target. The as-deposited films were composite materials with TiC as the main crystalline constituent. X-ray diffraction and photoelectron spectroscopy indicated that they also contained amorphous SiC, and for films deposited on inclined substrates, crystalline Ti5Si3Cx. The film morphology was dense and flat, while films deposited with direct-current magnetron sputtering under comparable conditions were rough and porous. We show that, due to the high degree of ionization of the sputtered species obtained in HIPIMS, the film composition, in particular the C content, depends on substrate inclination angle and Ar process pressure.  相似文献   

8.
In contrast to conventional plasma deposition methods, High Power Impulse Magnetron Sputtering (HIPIMS) utilizes extremely high power inputs in short pulses, providing for the discharge current densities up to several A/cm2. High ion densities are observed not only during the plasma on-time, but also within the afterglow period. Once ions are generated, they can contribute to the peak ion density of the next pulse if the off-time between the pulses is sufficiently small. When the HIPIMS cycle contains two pulses, separated by a short plasma off-time and followed by a long afterglow period, the peak ion density for the second pulse can be 5-7 percents higher than for the first pulse. With a dual cathode system and time-shifted pulsing with distinct magnetron heads it was possible to increase ion density gain up to 40% for Ti targets.  相似文献   

9.
Hysteresis behaviour during reactive High Power Impulse Magnetron Sputtering (HIPIMS) has been investigated in detail. Such analysis has been made possible by the recently developed plasma emission monitoring based reactive HIPIMS monitoring and control technology. Hysteresis curves were recorded at frequencies of 300, 450 and 600 Hz at an average power of 3.0 kW during reactive HIPIMS of Ti in Ar/O2 atmosphere. It is shown that the target pulsing parameters, such as frequency, pulse voltage, and duty cycle do affect the overall shape of the hysteresis loop. Analysis of the hysteresis behaviour at different target pulsing parameters reveals how different regions of the hysteresis loop are affected by different pulsing parameters. The outcomes of this work demonstrate trends and explain relationships between the pulsing parameters and the hysteresis behaviour. Although the overall picture is rather complicated, it is quite clear that the hysteresis effect is induced by the same processes as in direct current magnetron sputtering, while the influence of the reactive ion implantation oxidation mechanism appears to be far more significant in reactive HIPIMS.  相似文献   

10.
《Vacuum》2012,86(1):78-81
In contrast to conventional plasma deposition methods, High Power Impulse Magnetron Sputtering (HIPIMS) utilizes extremely high power inputs in short pulses, providing for the discharge current densities up to several A/cm2. High ion densities are observed not only during the plasma on-time, but also within the afterglow period. Once ions are generated, they can contribute to the peak ion density of the next pulse if the off-time between the pulses is sufficiently small. When the HIPIMS cycle contains two pulses, separated by a short plasma off-time and followed by a long afterglow period, the peak ion density for the second pulse can be 5–7 percents higher than for the first pulse. With a dual cathode system and time-shifted pulsing with distinct magnetron heads it was possible to increase ion density gain up to 40% for Ti targets.  相似文献   

11.
Deposition of complex shaped or round-symmetric samples requires multi-fold substrate rotations during deposition or multiple cathode arrangements. The present paper investigates the influence of the high power impulse magnetron sputtering (HIPIMS) and DC magnetron sputtering (DCMS) process on the mechanical and tribological properties as well as the resulting structure of CrN and TiN coatings using static (0-fold) and dynamic (1-, 2- and 3-fold) depositions in an industrial scale unit. Furthermore, to increase the deposition rate without losing the high ion density in the plasma a hybrid HIPIMS/DCMS deposition technique is investigated. The results demonstrate the advantage of the HIPIMS technique when using multi-fold substrate rotation during deposition as it enables depositions of CrNHIPIMS and TiNHIPIMS coatings with hardness values around 23 and 35 GPa, respectively, compared with around 15 GPa for CrNDCMS and TiNDCMS coatings. Hardness values of 35 GPa for TiNDCMS coatings prepared with substrate rotations could only be obtained when introducing an additional anode or using a multilayered CrNHIPIMS/TiNDCMS base layer as a template.Based on our results we can conclude that especially for up-scaling and multi-fold substrate rotations the HIPIMS process offers an improved performance as compared to DCMS.  相似文献   

12.
High power impulse magnetron sputtering (HIPIMS) has gained increasing scientific and industrial attention as it allows high plasma densities without the drawback of droplet formation. Recently, we showed that by a combination of HIPIMS with dc magnetron sputtering the properties of the coatings are comparable to those prepared solely with HIPIMS, but with the advantage of increased deposition rate.Here, we show that for CrNHIPIMS/TiNDCMS multilayered coatings the friction coefficient µ decreases from 0.7 to 0.35 (with an almost constant hardness H around 25 GPa, and modulus of indentation around 375 GPa) when decreasing the bilayer period λ from 7.8 to 6.4 nm, while keeping the CrNHIPIMS layer thickness constant at 3.2 nm. A further reduction of the friction coefficient at room temperature dry-sliding testing to ∼ 0.25 or 0.05 is obtained when an additional HIPIMS cathode equipped with a Cr or Ti target material, respectively, is added to the process. Contact angle measurements of distilled water drops on as deposited film surfaces were carried out to investigate their wettability. The measurements show, that with increasing contact angle from 70° to 90°, for the individual coatings prepared, also their friction coefficient increases from ∼ 0.05 to ∼ 0.8. The depositions of all coatings were achieved with two- and threefold substrate rotation, which meet the industrial requirements of uniform deposition on complex shaped specimens.  相似文献   

13.
G. Greczynski  L. Hultman 《Vacuum》2010,84(9):1159-653
Mass spectroscopy was used to analyze the energy and composition of the ion flux during high power pulsed magnetron sputtering (HIPIMS/HPPMS) of a Cr target in an industrial deposition system. The ion energy distribution functions were recorded in the time-averaged and time-resolved mode for Ar+, Ar2+, Cr+, Cr2+, N2+ and N+ ions. In the metallic mode the dependence on pulse energy (equivalent of peak target current) was studied. In the case of reactive sputtering in an Ar/N2 atmosphere, variations in ion flux composition were investigated for varying N2-to-Ar flow ratio at constant pressure and HIPIMS power settings. The number of doubly charged Cr ions is found to increase linearly with increasing pulse energy. An intense flux of energetic N+ ions was observed during deposition in the reactive mode. The time evolution of ion flux composition is analyzed in detail and related to the film growth process. The ionization of working gas mixture is hampered during the most energetic phase of discharge by a high flux of sputter-ejected species entering the plasma, causing both gas rarefaction and quenching of the electron energy distribution function. It is suggested that the properties (composition and energy) of the ion flux incident on the substrate can be intentionally adjusted not only by varying the pulse energy (discharge peak current), but also by taking advantage of the observed time variations in the composition of ion flux.  相似文献   

14.
Sliding, abrasive, and impact wear tests were performed on chromium nitride (CrN)-based coatings deposited on mirror-polished M2 high speed steel substrates by the novel high power impulse magnetron sputtering (HIPIMS) utilising high peak cathode powers densities of 3000 W cm−2. The coatings were compared to single layer CrN and multilayer superlattice CrN/NbN coatings deposited by the arc bond sputtering (ABS) technique designed to improve the coating substrate adhesion by a combined steered cathodic arc/unbalanced magnetron (UBM) sputtering process. The substrates were metal ion etched using non-reactive HIPIMS or steered cathodic arc at a substrate bias voltage of −1200 V. Subsequently a 2- to 3-μm thick CrN or CrN/NbN coating was deposited by reactive HIPIMS or UBM. No bias was used during the HIPIMS deposition, while the bias during UBM growth was in the range 75-100 V. The ion saturation current measured by a flat electrostatic probe reached values of 50 mA cm−2 peak for HIPIMS and 1 mA cm−2 continuous during UBM deposition. The microstructure of the HIPIMS coatings observed by transmission electron microscopy was fully dense in contrast to the voided columnar structure observed in conventional UBM sputtered CrN and CrN/NbN. The sliding wear coefficients of the HIPIMS CrN films of 2.3×10−16 m3 N−1 m−1 were lower by a factor of 4 and the roughness of the wear track was significantly reduced compared to the UBM-deposited CrN. The abrasive wear coefficient of the HIPIMS coating was 2.2×10−13 m3 N−1 m−1 representing an improvement by a factor of 3 over UBM deposited CrN and a wear resistance comparable to that of the superlattice CrN/NbN. The adhesion of the HIPIMS deposited CrN was comparable to state-of-the-art ABS technology.  相似文献   

15.
This paper reports preliminary results of industrial size (152 mm target O.D.) rotatable magnetron sputtering of Al target in direct current (DC) and High Power Impulse Magnetron Sputtering (HIPIMS) modes using two standard commercially available magnetic arrays: standard strength array (as used for DC and AC processing) and a lower strength ‘RF’ array [i.e. as used for radio frequency (RF) magnetron sputtering]. A comparison of processes resulted in by combining the different magnetic arrays and power modes is made in terms of magnetic field distribution on the cathode surface, magnetron characteristics, process characteristics and deposition rates.Optical emission spectroscopy (OES) revealed enhanced sputtered Al flux ionisation in the HIPIMS discharge monitored 64 mm away from the target surface when using the ‘RF’ array. Importantly, the results of this work (at the processing conditions investigated) demonstrate that at the same average power the deposition rate of Al using HIPIMS in conjunction with the ‘RF’ array is substantially the same as that obtained for the ‘standard’ strength balanced array and DC power. This indicates that the magnetic field design of the ‘RF’ magnetic array affects favourably the sputtered flux transport perpendicular to the target surface by altering mass transport direction and minimising effects that reduce deposition rate (e.g. ion return effect). Arc rate is also reduced significantly (approximately ten times) if the low strength ‘RF’ array is used.  相似文献   

16.
Reactive sputtering rates of titanium in argon-oxygen plasmas were studied as a function of oxygen and argon partial pressures in an r.f. diode sputtering system at 2 keV bias voltage. The sputtering rate changed by an order of magnitude at a critical oxygen mole fraction in the plasma equal to 0.0070. This transition corresponds to the onset of target oxidation. The threshold for target oxidation is shown to be independent of the total plasma pressure, and to be specified uniquely by a critical mole fraction of oxidant in the plasma.  相似文献   

17.
Modulated pulse power sputtered chromium coatings   总被引:1,自引:0,他引:1  
Cr coatings were deposited using continuous dc magnetron sputtering (dcMS) and modulated pulse power sputtering (MPP) techniques in a closed field unbalanced magnetron sputtering system at equivalent average target powers. It was found that MPP sputtering exhibited higher deposition rates than in dcMS when the average target power density was above 14 W cm− 2 for the Cr coating depositions. Plasma diagnostics confirmed a significant increase in the numbers of both target material (Cr) and gas (Ar) ions in the MPP plasma as compared to the dc plasma. The substrate peak current densities measured in the MPP depositions (104-324 mA cm− 2) have been increased by over a factor of 50 to those in the dcMS conditions (2-5.5 mA cm− 2). The enhanced ion flux bombardment from the highly ionized MPP plasma led to the formation of denser microstructure and finer grain size in the MPP Cr coatings than in the dcMS Cr coatings. In addition, MPP sputtered Cr coatings exhibited improved hardness and adhesion.  相似文献   

18.
Direct metallization of plastics by high powerimpulse magnetron sputtering Even if polymers are today industrially used for decades the direct metallization of plastics is still a hot topic for research and development. Especially in light of the ban of hexavalent chromium an increasing demand for well‐adhering plastic metallization arises. High power impulse magnetron sputtering HIPIMS is a recent technology that can offer a high potential for successfully solving this challenge. This article focuses on the direct metallization of plastics by HIPIMS. In the frame of the investigations any pretreatment was ignored and the different polymers were directly under vacuum metallized. Compared to conventional mid‐frequency sputtering a significant improvement in adhesion was shown for different polymers. In detail the metallization of Plexiglas (PMMA) was investigated, since this polymer is highly challenging with respect to plasma processes. Due to the UV radiation damage of PMMA during plasma deposition direct metallization is usually not possible. Using ionized deposition it was possible to directly metallize the substrates with excellent adhering films without any interface layers or special pretreatments. The characterization of the substrate‐coating interface showed that for the well adhering films a cohesive fracture, i.e. a fracture within the polymer occurred.  相似文献   

19.
J.T. Gudmundsson 《Vacuum》2010,84(12):1360-1364
Various magnetron sputtering tools have been developed that provide a high degree of ionization of the sputtered vapor referred to as ionized physical vapor deposition (IPVD). The ions can be controlled with respect to energy and direction as they arrive to the growth surface which allows for increased control of film properties during growth. Here, the design parameters for IPVD systems are briefly reviewed. The first sputter based IPVD systems utilized a secondary plasma source between the target and the substrate in order to generate a highly ionized sputtered vapor. High power impulse magnetron sputtering (HiPIMS) is a recent sputtering technique that utilizes IPVD where a high density plasma is created by applying high power pulses at low frequency and low duty cycle to a magnetron sputtering device. A summary of the key experimental findings for the HiPIMS discharge is given. Measurements of the temporal and spatial behavior of the plasma parameters indicate electron density peak, that expands from the target with a fixed velocity. The discharge develops from an inert sputtering gas dominated to a sputtered vapor dominated during the pulse. The high electron density results in a high degree of ionization of the deposition material.  相似文献   

20.
《Vacuum》2011,85(12):1360-1364
Various magnetron sputtering tools have been developed that provide a high degree of ionization of the sputtered vapor referred to as ionized physical vapor deposition (IPVD). The ions can be controlled with respect to energy and direction as they arrive to the growth surface which allows for increased control of film properties during growth. Here, the design parameters for IPVD systems are briefly reviewed. The first sputter based IPVD systems utilized a secondary plasma source between the target and the substrate in order to generate a highly ionized sputtered vapor. High power impulse magnetron sputtering (HiPIMS) is a recent sputtering technique that utilizes IPVD where a high density plasma is created by applying high power pulses at low frequency and low duty cycle to a magnetron sputtering device. A summary of the key experimental findings for the HiPIMS discharge is given. Measurements of the temporal and spatial behavior of the plasma parameters indicate electron density peak, that expands from the target with a fixed velocity. The discharge develops from an inert sputtering gas dominated to a sputtered vapor dominated during the pulse. The high electron density results in a high degree of ionization of the deposition material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号