首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钢结构加层技术是目前逐步被推广的一种房屋改造形式,但目前设计方法还不够完善.利用ANSYS有限元软件,结合具体工程实例,对砖混结构顶部直接采用轻钢结构加层建立三维有限元模型,对原砖混结构与加层后整体结构的抗震性能进行模态分析、谱分析以及时程分析,通过分析比较获得结构的动力特性和地震作用效应的变化规律,为相似加层结构的抗震设计提供了一些理论参考.  相似文献   

2.
The assumption that the dynamic performance of structures is mainly determined from the corresponding single‐degree‐of‐freedom system in pushover analysis is generally valid for low‐rise structures, where the structural behaviour is dominated by the first vibration mode. However, higher modes of medium‐ and high‐rise structures will have significant effect on the dynamic characteristics. In this paper, the applicability of pushover analysis for seismic evaluation of medium‐to‐high‐rise shear‐wall structures is investigated. The displacements and internal forces of shear wall structures with different heights are determined by nonlinear response history analysis, where the shear walls are considered as multi‐degree‐of‐freedom systems and modelled by fibre elements. The results of the analysis are compared with those from the pushover procedure. It is shown that pushover analysis generally underestimates inter‐storey drifts and rotations, in particular those at upper storeys of buildings, and overestimates the peak roof displacement at inelastic deformation stage. It is shown that neglecting higher mode effects in the analysis will significantly underestimate the shear force and overturning moment. It is suggested that pushover analysis may not be suitable for analysing high‐rise shear‐wall or wall‐frame structures. New procedures of seismic evaluation for shear‐wall and wall‐frame structures based on nonlinear response history analysis should be developed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In recent earthquakes, many buildings have been damaged due to the soft‐storey mechanism failure. The seismic design codes for buildings do not contain enough criteria to predict the real displacement of such buildings. This paper focuses on evaluating the nonlinear displacement of buildings that fail in soft‐storey mechanism form. Results show that the nonlinear static procedure with coefficient method, which is described in Chapter 3 of ASCE/SEI 41‐06, does not have sufficient accuracy for estimation of structure displacement demand in such buildings. In this paper, the coefficient methodology is used for evaluating the target displacement for 5‐storey, 8‐storey and 15‐storey special moment resisting steel frames. For this purpose, dynamic nonlinear time‐history analysis has been applied for the mentioned structures having a soft‐storey mechanism failure form. The numerical results of storey displacement and interstorey drift were compared with those values obtained from the coefficient method described in Chapter 3 of ASCE/SEI 41‐06. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Strong aftershocks have the potential to further aggravate the damage state of structures, and much less attention has been given to the seismic vulnerability of high‐rise buildings than that of low‐ to medium‐rise buildings. This study assesses the seismic vulnerability of a 32‐storey frame–core tube building by performing the incremental dynamic analysis on the material‐based three‐dimensional numerical model. A storey damage model based on the material damage is developed using the weighted average method. Eighteen recorded mainshock–aftershock sequences, whose mainshock records match the target spectrum, are selected. The results indicate that the developed stroey damage model can effectively reflect the additional damage induced by aftershocks. Strong aftershocks have high potential to change the location of weak storeys. Notably, shifts of weak storeys are observed in more than 30% of aftershocks with relative spectral acceleration of 0.8. As the mainshock‐induced damage state becomes more severe, the mainshock‐damaged building becomes increasingly fragile to the aftershock excitation and more sensitive to aftershock intensities. The probability of exceeding severe damage state increases from 35.3% to 62.1% due to the effects of strong aftershocks. The results in this study can provide supports to the seismic resilience assessment of this high‐rise building.  相似文献   

5.
In the present paper, the issue of the approximate definition of a new equivalent non‐linear single‐degree‐of‐freedom (NLSDF) system on spatial asymmetric reinforced concrete (r/c) tall multi‐storey buildings is presented. In order to achieve this goal, three different types of r/c systems are examined: the first type refers to multi‐storey planar r/c frames; the second type refers to asymmetric single‐storey r/c building; and the third type refers to asymmetric multi‐storey r/c buildings. The definition of the NLSDF system is mathematically derived, considering suitable dynamic loadings on the masses of each r/c system using simplified assumptions. The NLSDF system is very useful in the seismic design of the r/c systems, since it is widely used in all forms of various pushover analyses that have been published in the past. The use of the equivalent NLSDF system in combination with the inelastic design spectra can give an acceptable evaluation of the maximum required seismic floor displacement for a known design earthquake. The present paper concludes the total theory of definition of the optimum equivalent NLSDF system for the above three types of buildings that possess the required normality by the contemporary seismic codes in elevation. In order to illustrate the theory, three numerical examples are presented, respectively. The final numerical required displacement results by the use of the equivalent NLSDF system are verified and checked by non‐linear response history analyses. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
A simplified multi‐degree‐of‐freedom (MDOF) model is developed for estimation of seismic response of tall wall‐frame structures. By using the continuum technique for the structure and adopting the bilinear hysteretic model for material properties, procedure for the development of the simplified MDOF model is derived. The numerical study for a 20‐storey reinforced concrete (RC) wall‐frame structure is conducted to investigate the accuracy of seismic response predicted by the proposed model. Results from the nonlinear response history analyses based on the proposed MDOF model and the detailed structural model with member‐by‐member representation are compared and show very good agreement. The proposed simplified MDOF model is shown to provide a simple, efficient and accurate method for estimation of seismic performance of tall wall‐frame structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The influence of the exterior joints capacity deterioration on the local and global failure mechanisms of reinforced concrete structures with infills is investigated. Exterior beam-column joints with reduced capacity is the common case for the majority of RC structures designed according to older design standards. Nevertheless in common practise the response of these regions is typically assumed as rigid. A key parameter of this investigation is the inclusion of the joints strength and stiffness degradation in the study of the seismic performance of the structures. In this direction, a special-purpose rotational spring element that incorporates a special behaviour model is employed for the simulation of the exterior joints’ local response. The spring element has been incorporated in a well-established general program for nonlinear static and dynamic analysis. The effectiveness of the used joint element model has been demonstrated in a previous paper through comparisons with experimental data reported in literature. In this paper an attempt is presented for the investigation of the influence of the exterior joint damage on the seismic behaviour of bare and infilled RC frame structures. Two types of masonry infilled structures are considered: (a) infilled frame and (b) infilled frame without infills at the base storey (pilotis frame). A parametrical study of the overall seismic response using push over analyses and step-by-step analyses is performed. Results in terms of interstorey drifts, base shear, failure mode, ductility requirements and joints rotational requirements demonstrate that neglecting the possible local damage of the exterior joints may lead to erroneous conclusions and unsafe design or seismic behaviour evaluation that subsequently may become critical in some cases. Furthermore the influence of exterior joints degradation has been proven of vital importance for the overall behaviour of pilotis frames.  相似文献   

8.
This paper investigates the potential of double‐layer space structures to be applied vertically as a new structural system in super‐tall buildings. The investigation using case studies covers four stages: structural designs of 100‐storey buildings in order to obtain internal force distributions and determine appropriate structural member sizes, analyses of the impacts of wind and seismic loads on the structures, sensitivity of structural weight ratios and lateral deflection constraints to changing structural geometry, and comparison of the lateral deflected shapes and structural weights per unit area with those of other current tall structural systems. The results show that changing the angles of diagonal members to make them span two storeys rather than one storey reduces structural weight and has little impact on lateral deflection. Compared with other current tall structures, vertical double‐layer space structures are relatively efficient structurally. The study concludes that double‐layer space structures can be applied vertically as a structural system of super‐tall buildings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, the effects of infill walls to the response of a selected building under earthquake loading were investigated. Although various suggestions have been offered, designers usually neglect the effect of infill walls on building behaviour when designing a building. In this study, the effects of infill walls on a building, which consists of two storeys of basement, one storey of ground floor, one storey of mezzanine floor and 10 storeys of flats, were investigated. Three‐dimensional models of the building with and without infill walls were modelled in SAP2000. Then, nonlinear time history analysis was performed on the models with and without infill walls. Infill walls were modelled both as mass and structural elements. The results of two analyses were compared. Consequently, the effect of infill walls on the behaviour of buildings such as period, maximum roof displacement, base columns end‐forces and soft‐storey formation coefficient was determined. Addition of infill wall to the structures caused changes in maximum roof displacement, modal periods, maximum base column end‐forces, shear force and soft‐storey formation coefficient. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
This work presents an efficient approach using time‐varying autoregressive with exogenous input (TVARX) model and a substructure technique to identify the instantaneous modal parameters of a linear time‐varying structure and its substructures. The identified instantaneous natural frequencies can be used to identify earthquake damage to a building, including the specific floors that are damaged. An appropriate TVARX model of the dynamic responses of a structure or substructure is established using a basis function expansion and regression approach combined with continuous wavelet transform. The effectiveness of the proposed approach is validated using numerically simulated earthquake responses of a five‐storey shear building with time‐varying stiffness and damping coefficients. In terms of accuracy in determining the instantaneous modal parameters of a structure from noisy responses, the proposed approach is superior to typical basis function expansion and regression approach. The proposed method is further applied to process the dynamic responses of an eight‐storey steel frame in shaking table tests to identify its instantaneous modal parameters and to locate the storeys whose columns yielded under a strong base excitation.  相似文献   

11.
In order to obtain the seismic demands of spatial asymmetric multi‐storey reinforced concrete (r/c) buildings, a new seismic nonlinear static (pushover) procedure that uses inelastic response acceleration spectra is presented in this paper. The latter makes use of the optimum equivalent nonlinear single degree of freedom system, which is used to represent the general spatial asymmetric multi‐storey r/c building. For each asymmetric multi‐storey building, a total of 12 suitable nonlinear static analyses are needed according to the new proposed procedure, whereas at least 96 suitable nonlinear dynamic analyses are required in the case of nonlinear response history analysis (NLRHA), respectively. In addition, the present paper provides answers to a series of further questions with reference to the spatial action of the two horizontal seismic components in the static nonlinear (pushover) analyses, as well as to the documented calculation of the available behaviour factor of the asymmetric multi‐storey r/c building. According to the paper, this new proposed seismic nonlinear static procedure is a natural extension of the documented equivalent seismic static linear (simplified spectral) method that is recommended by the established contemporary seismic codes, with reference to torsional provisions. Finally, through a restricted parametric analysis carried out in this paper, a relevant numerical example of a two‐storey r/c building is presented for illustration purposes, where the seismic demand floor inelastic displacements are compared with the respective displacements obtained by the NLRHA. Consequently, the new proposed seismic nonlinear static procedure, which uses inelastic response acceleration spectra, can reliably evaluate the extreme values of floor inelastic displacements (on the flexible and stiff side of the building), as is shown by the above comparisons. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
CIB working commission W23, which deals with structural walls, has published design Recommendations for both reinforced and unreinforced masonry. The procedures set out for seismic design in reinforced masonry have been tested in a research project in Italy, and the results are presented here by Professors Calvi and Macchi from the University of Pavia. They show that buildings of 4 storeys in high‐risk zones and of 5 storeys in moderate‐risk zones can safely be designed in reinforced masonry according to the Recommendations, using highly perforated blocks only 300 mm thick.  相似文献   

13.
以砌体平均抗剪强度公式和理想弹塑性模型为基础,建立了砌体结构楼层屈服强度系数的计算公式,同时考虑了抗震措施的影响,实现了单片墙肢设计强度计算向楼层屈服强度计算的转换。根据Dwairi等提出的以窄Takeda滞回模型为基础的有效阻尼计算公式,并考虑砌体结构的基本周期和延性特征对其进行适当简化,建立了采用结构整体位移延性系数表达的砌体结构阻尼折减系数公式。根据剪切型薄弱层屈服机制的特征,建立了砌体结构层间位移延性系数与整体位移延性系数的关系。据此,可根据不同性能目标和抗震措施下的层间位移延性系数直接计算阻尼折减系数。通过楼层屈服强度系数与阻尼折减系数的比较,实现罕遇地震与设防烈度地震作用下规则多层砌体结构的抗震计算。分析表明,所提方法简便实用,分析结果合理可靠,可用于基于性能的规则多层砌体结构抗震分析。  相似文献   

14.
轻钢增层结构地震反应高振型影响研究   总被引:5,自引:1,他引:4  
王燕 《工业建筑》1999,29(5):21-24
带有轻钢增层的结构,质量与刚度在房屋的增层处出现明显减弱,在地震反应中高阶振型的影响较为显著,为此,采用振型分解法分析了在高阶振型组合影响下,轻钢增层结构的地震反应,对采用底部剪力法进行抗震设计时,动力放大系数的合理取值进行了计算与分析。  相似文献   

15.
This study utilized nonlinear response history analysis to compare the seismic demand on three variations of a 40‐storey buckling‐restrained braced frame designed for high seismic hazard in the Los Angeles region. The three designs were referred to as a ‘code‐based design’, based on the 2006 International Building Code, a ‘performance‐based design’, based on criteria published by the Los Angeles Tall Building Design Council (LATBSDC) and a ‘performance‐based design plus’, based on newly developed criteria from The Pacific Earthquake Engineering Research Center (PEER). The response history analysis utilized spectrum‐matched ground motions as well as simulated ground motions for the Puente Hills fault. The spectrum‐matched motions were selected from the Next Generation Attenuation of Ground Motions (NGA) database, which is largely composed of recorded motions and scaled to five hazard levels. The simulated ground motions were broadband signals generated from a moment magnitude (Mw) 7.15 scenario rupture of the Puente Hills fault for two near fault regions and exhibit long period energy content that significantly exceeds the uniform hazard spectrum. Structural performance was assessed in terms of exceedance of a safe inter‐storey drift ratio (IDR). It was seen that the simulated ground motions impose higher IDR demands on the structures than the spectrum‐matched NGA ground motions. Furthermore, the number of instances of exceedance of a safe IDR, considered for this study as IDR = 0.03, is substantially higher for the simulated ground motions, pointing to the importance of considering such motions in the collapse prevention of tall buildings on a site‐specific basis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
基于隔震理论提出减震结构优化设计方法,对某8度区11层框架结构进行了减震设计,通过附加粘滞阻尼器达到设防目标,根据振型分析调整隔震层层高,使安装阻尼器楼层位置降低至底部2层;将选取的7组加速度时程曲线分为4种工况,采用ETABS对减震结构进行了多遇地震作用下的时程分析,比较了各工况下阻尼器耗能总量和最大层间位移角。研究结果表明:将主体结构与减震装置看作有机整体对减震结构进行设计可取得较好的减震效果;将隔震层主体结构抗侧刚度作为减震装置设计参数,使隔震层基本周期与场地特征周期相等可取得最佳减震效果。  相似文献   

17.
介绍了基于性能的抗震设计思想,分析了底框结构的抗震性能,通过动力时程分析,研究了底框结构在不同地震强度作用下的弹塑性反应,分析了这类结构的受力和变形特征。通过算例,介绍底框结构基于性能的抗震设计分析并得到相关的结论。  相似文献   

18.
The use of modular‐prefabricated steel structures has distinct advantages, such as rapid construction, industrial production, and environmental protection. Although this type of structure has been extensively employed around the world, it is primarily used for low‐rise buildings; its application in high‐rise buildings is limited. This paper proposes a new type of modular‐prefabricated high‐rise steel frame structure with diagonal braces. An elastic–plastic time‐history analysis of a 30‐storey building during rare earthquakes was performed. The base shear, storey drift, stress, damage characteristics, and other performances of the structure were investigated. According to the mechanism analysis, finite element simulation, and model test, the formulas for the elastic and elastic–plastic design of the truss–column connection, column–column flange connection, and diagonal brace–truss connection are proposed in this paper. The control parameters for the structural design are also discussed. This study provides an important reference for the research and design of this type of modular‐prefabricated high‐rise steel structure. The design method has been compiled into a design specification named Technical Specifications for Prefabricated Steel Frame Structure with Diagonal Bracing Joints, which is unique for this type of structure.  相似文献   

19.
基于"强化转换层及其下部、相对弱化转换层上部"的抗震设计理念,提出了一级抗震大跨度预应力型钢混凝土(PSRC)空腹桁架转换层框架结构"三道防线抗震设防"的设计目标,明确了三道防线的具体划分方法、各防线内力调整措施初步方案以及主要抗震性能的量化控制指标.然后,以两榀不同上抬层数的8度(0.2g)一级抗震的两跨PSRC空腹...  相似文献   

20.
采用能量概念能更清楚地揭示结构抗震性能的本质。首先介绍了基于能量概念的结构抗震设计有关研究状况。同时根据地震作用下不均匀剪切型层模型结构的弹性和弹塑性时程分析结果,研究了能量在其楼层间分布的特点,给出了楼层能量集中的规律及相关影响因素。并采用等往复振动能量准则建议了能量集中楼层的弹塑性位移计算方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号