共查询到12条相似文献,搜索用时 15 毫秒
1.
2.
The accurate prediction of the aerodynamics and performance of vertical‐axis wind turbines is essential if their design is to be improved but poses a significant challenge to numerical simulation tools. The cyclic motion of the blades induces large variations in the angle of attack of the blades that can manifest as dynamic stall. In addition, predicting the interaction between the blades and the wake developed by the rotor requires a high‐fidelity representation of the vortical structures within the flow field in which the turbine operates. The aerodynamic performance and wake dynamics of a Darrieus‐type vertical‐axis wind turbine consisting of two straight blades is simulated using Brown's Vorticity Transport Model. The predicted variation with azimuth of the normal and tangential force on the turbine blades compares well with experimental measurements. The interaction between the blades and the vortices that are shed and trailed in previous revolutions of the turbine is shown to have a significant effect on the distribution of aerodynamic loading on the blades. Furthermore, it is suggested that the disagreement between experimental and numerical data that has been presented in previous studies arises because the blade–vortex interactions on the rotor were not modelled with sufficient fidelity. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
3.
Skeletal reaction model generation,uncertainty quantification and minimization: Combustion of butane 总被引:1,自引:0,他引:1
Skeletal reaction models for n-butane and iso-butane combustion are derived from a detailed chemistry model through directed relation graph (DRG) and DRG-aided sensitivity analysis (DRGASA) methods. It is shown that the accuracy of the reduced models can be improved by optimization through the method of uncertainty minimization by polynomial chaos expansion (MUM-PCE). The dependence of model uncertainty on the model size is also investigated by exploring skeletal models containing different number of species. It is shown that the dependence of model uncertainty is subject to the completeness of the model. In principle, for a specific simulation the uncertainty of a complete model, which includes all reactions important to its prediction, is convergent with respect to the model size, while the uncertainty calculated with an incomplete model may display unpredictable correlation with the model size. 相似文献
4.
Blade element momentum (BEM) theory is the standard computational technique for the prediction of power curves of wind turbines; it is based on the two‐dimensional aerodynamic properties of aerofoil blade elements and some corrections accounting for three‐dimensional wing aerodynamics. Although most BEM models yield acceptable results for low‐wind and pitch‐controlled regimes where the local angles of attack are small, no generally accepted model exists up to date that consistently predicts the power curve in the stall regime for a variety of blade properties and operating conditions. In this article we present a modified BEM model which satisfactorily reproduces the power curves of four experimental wind turbines reported in the literature, using no free fit parameters. Since these four experimental cases comprehend a great variety of conditions (wind tunnel vs field experiments, different air densities) and blade parameters (no twist and no taper, no taper but twist, both twist and taper, different aerofoil families), it is believed that our model represents a useful working tool for the aerodynamic design of stall‐regulated wind turbines. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
5.
Babak Badrzadeh 《风能》2011,14(3):425-448
This paper investigates the possibilities of viable power electronics converters, semiconductor switching devices and electric machines for 10 MW variable‐speed wind turbine generators. The maximum rated power of existing wind turbine configurations is in the range of 6 MW. The proposed alternatives are compared against several technical and economical factors, and their advantages over the present wind turbines are highlighted. A comprehensive performance comparison of modern power semiconductor devices, their electrical characteristics and the key differentiators among them are presented. The power electronics converters considered include all commercially available multilevel voltage source and current source converters as well as the opportunities offered by power electronics building block‐based design. The factors used for the comparison include the converter power range, capacitor voltage balancing, common mode voltage and current, electromagnetic interference emissions, fault ride‐through capability, reliability, footprint, harmonic performance, efficiency and losses, component count, risk of torsional vibration by the harmonics and inter‐harmonics, complexity, ease of back‐to‐back operation and filtering requirements. For the electric machines, this study concentrates on high‐temperature superconducting machines, multi‐phase induction machines and permanent magnet synchronous machines. These machines are compared against existing wind generator technologies in terms of their power range, torque density, efficiency, fault ride‐through capability, reliability, footprint, harmonic performance, ease of fault detection, excitation control, noise and vibration signature, oscillation damping, gearbox requirement, cost and the size of the associated converter. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
6.
Rapid optimization of stall‐regulated wind turbine blades using a frequency‐domain method: Part 2, cost function selection and results
下载免费PDF全文

Karl O. Merz 《风能》2015,18(6):955-977
A fast and effective frequency‐domain optimization method was developed for stall‐regulated blades. It was found that when using linearized dynamics, typical cost functions employing damage‐equivalent root bending moments are not suitable for stall‐regulated wind turbines: when the cost function is minimized, the edgewise damping can be low, and the flapwise damping can approach zero during an extreme operating gust. A new cost function is proposed that leads to nicely balanced stall behavior and damping over the entire operating windspeed range. The method was used to design the blades of two multi‐MW, stall‐regulated, offshore wind turbines, comparable with the NREL 5 MW and NTNU 10 MW pitch‐regulated turbines. It is shown that the optimal stall‐regulated blade has a unique aerodynamic profile that gives high flapwise and edgewise damping and a uniform mean power output above the rated windspeed. The blades are described in sufficient detail that they can be used in further aeroelastic analyses, to compare large stall‐regulated and pitch‐regulated turbines. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
7.
Mesoscale modeling of offshore wind turbine wakes at the wind farm resolving scale: a composite‐based analysis with the Weather Research and Forecasting model over Horns Rev
下载免费PDF全文

The use of mesoscale modeling to reproduce the power deficits associated with wind turbine wakes in an offshore environment is analyzed. The study is based on multiyear (3 years) observational and modeling results at the Horns Rev wind farm. The simulations are performed with the Weather Research and Forecasting mesoscale model configured at a high horizontal resolution of 333 m over Horns Rev. The wind turbines are represented as an elevated momentum sink and a source of turbulent kinetic energy. Composites with different atmospheric conditions are extracted from both the observed and simulated datasets in order to inspect the ability of the model to reproduce the power deficit in a wide range of atmospheric conditions. Results indicate that mesoscale models such as Weather Research and Forecasting are able to qualitatively reproduce the power deficit at the wind farm scale. Some specific differences are identified. Mesoscale modeling is therefore a suitable framework to analyze potential downstream effects associated with offshore wind farms. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
8.
The increasing pressures in the environment and the environmental social awareness have produced the need for studying interactions between the sectors of the economy and the environment. For a more comprehensive evaluation of sustainability and growth, the field of financial accounting needs to be expanded in order to comprise the use of natural resources and losses in the production process. The paper examines and proposes the cost–benefit analysis model as a useful estimation method of environmental revenues and costs incurred in Greece. These revenues and costs will appear in the profit and loss account statement. Environmental tax is an important cost for all industries with sustainable growth. Taxes are imposed on the natural units, which have a determined negative effect on the environment. Moreover, this paper examines the inherent interaction between the environment and the economic performance of enterprises by adopting environmental management and information green accounting systems. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
9.
Two parameters have been added to the Extended UNIQUAC model of Thomsen and Rasmussen [Thomsen, K., Rasmussen, P., 1999. Modeling of vapor–liquid–solid equilibrium in gas-aqueous electrolyte systems. Chem. Eng. Sci. 54, 1787–1802] to account for the pressure dependency of mineral solubility. The improved model has been used for correlating and predicting vapor–liquid–solid equilibrium for different carbonate systems (CaCO3, MgCO3, BaCO3 and SrCO3) causing mineral scaling problems. The solubility of NaCl and CO2 in pure water and the solubility of CO2 in NaCl and Na2SO4 solutions have also been correlated. The results show that the Extended UNIQUAC model, with the added pressure parameters, is able to represent binary (NaCl–H2O, CaCO3–H2O, BaCO3–H2O, SrCO3–H2O, MgCO3–H2O, Mg(OH)2–H2O and CO2–H2O), ternary (CaCO3–CO2–H2O, BaCO3–CO2–H2O, SrCO3–CO2–H2O, MgCO3–CO2–H2O, CO2–NaCl–H2O and CO2–Na2SO4–H2O), and quaternary (CO2–NaCl–Na2SO4–H2O) solubility data within the experimental accuracy in the range of temperatures and pressures considered in the study, i.e. from 0 to 250 °C, and from 1 to 1000 bar, respectively.The modified Extended UNIQUAC model will be a useful tool for predicting and quantifying the scaling problems that may occur in wells and surface equipment during geothermal operations. This would allow adequate preventive measures to be taken before mineral deposition becomes troublesome. 相似文献
10.
This paper presents a generalization of previous works developed by the authors in the field of the calculation and selection of slewing bearings, where a theoretical model for the estimation of the static load‐carrying capacity of four‐contact‐point slewing bearings was obtained. Those previous works assumed that there was no preload in the balls; in the present work, the model has been improved in order to consider the effect of the preload, in such a way that it provides more realistic results because this type of bearings are preloaded in several applications to increase the stiffness and therefore the accuracy of the system. In parallel, and for comparison purposes, the finite element model built by the authors in previous works has been also adapted to include the preload in the balls. Both models, theoretical and FE, assess in complete agreement the increase of the stiffness with the preload level; the results show that the static load‐carrying capacity does not vary appreciably with the usual values adopted for the preload. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
11.
Given recent developments on energy markets and skyrocketing oil prices, we argue for an urgent need to study the potential effects of world oil production reaching a maximum (Peak Oil) in order to facilitate the development of adaptation policies. We consider input–output (IO) modelling as a powerful tool for this purpose. However, the standard Leontief type model implicitly assumes that all necessary inputs to satisfy a given demand can and will be supplied. This is problematic if the availability of certain key inputs becomes restricted and it is therefore only of limited usefulness for the study of the phenomenon of Peak Oil. Hence this paper firstly reviews two alternative modelling tools within the IO framework: supply-driven and mixed models. The former has been severely criticised for its problematic assumption of perfect factor substitution and perfect elasticity of demand as revealed by Oosterhaven [Oosterhaven J. On the plausibility of the supply-driven IO model. J Reg Sci 1988; 28:203–17. [1]]. The supply-constrained model on the other hand proved well suited to analyse the quantity dimension of Peak Oil and is therefore applied empirically in the second part of the paper, using data for the UK, Japanese and Chilean economy. Results show how differences in net-oil exporting and net-oil importing countries are clearly visible in terms of final demand. Industries, most affected in all countries, include transportation, electricity production and financial and trade services. 相似文献
12.
Validation of boundary layer parameterization schemes in the Weather Research and Forecasting (WRF) model under the aspect of offshore wind energy applications—part II: boundary layer height and atmospheric stability
下载免费PDF全文

Five different planetary boundary layer (PBL) schemes in the Weather Research and Forecasting (WRF) model have been tested with respect to their capability to model boundary layer parameters relevant for offshore wind deployments. For the year 2005, model simulations based on the YSU, ACM2, QNSE, MYJ and MYNN2 PBL schemes with WRF have been performed for the North Sea and validated against measurements from the FINO1 platform. In part I, the investigations had focused on the key parameters 100 m mean wind speed and wind shear in terms of the power‐law exponent. In part II, the focus is now set on the capability of the model to represent height and stability of the marine atmospheric boundary layer.Considerable differences are found among the PBL schemes in predicting the PBL height. A substantial part of this variation is explained by the use of different PBL‐height definitions in the schemes. The use of a standardized procedure in calculating the PBL height from common WRF output parameters, in particular the temperature gradient and the wind shear, leads to reduced differences between the different schemes and a closer correspondence with the FINO1 measurements. The study also reveals a very clear seasonal dependency of the atmospheric stability over Southern North Sea. During winter time, the marine atmospheric boundary layer is more or less neutral with several episodes of unstable periods. During spring and early summer, the occurrence of periods with very stable stratification becomes dominant with stable conditions up to 40–45% of the time when warm continental air is advected from the South. In general, the results of part II confirm again that the MYJ scheme performs slightly better than the others and can therefore be suggested as first choice for marine atmospheric boundary layer simulations without a priori information of atmospheric stability in the region of interest. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献