首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水平轴风力机风轮尾迹与圆柱型塔架的相互干涉   总被引:4,自引:0,他引:4  
曹人靖  胡骏 《太阳能学报》2006,27(4):326-330
建立了一个考虑上游风轮尾迹与下游塔架相互干涉的物理模型,并进行了详细的数值模拟。基于Navier-Stokes方程,重点研究了上游尾迹与下游圆柱型塔架相互干涉的二维物理特征、旋涡脱落频率、力的脉动与频谱以及纵向位置的影响;计算的流场与水洞进行的激光诱导荧光显示技术的流场显示结果进行了对比;在相同的横向位置和来流条件下,获得了处于不同纵向位置的干涉结果。研究结果对于揭示风力机风轮尾迹与下游塔架相互干涉的物理机理,减少由于位势干涉和尾迹粘性所诱导的非定常气动力,以及对于风力机的气动弹性稳定性和噪声辐射的研究等都有着重要的理论价值。  相似文献   

2.
    
Aerodynamic wake interaction between commercial scale wind turbines can be a significant source of power losses and increased fatigue loads across a wind farm. Significant research has been dedicated to the study of wind turbine wakes and wake model development. This paper profiles influential wake regions for an onshore wind farm using 6 months of recorded SCADA (supervisory control and data acquisition) data. An average wind velocity deficit of over 30% was observed corresponding to power coefficient losses of 0.2 in the wake region. Wind speed fluctuations are also quantified for an array of turbines, inferring an increase in turbulence within the wake region. A study of yaw data within the array showed turbine nacelle misalignment under a range of downstream wake angles, indicating a characteristic of wind turbine behaviour not generally considered in wake studies. The turbines yaw independently in order to capture the increased wind speeds present due to the lateral influx of turbulent wind, contrary to many experimental and simulation methods found in the literature. Improvements are suggested for wind farm control strategies that may improve farm‐wide power output. Additionally, possible causes for wind farm wake model overestimation of wake losses are proposed.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
IntroductionShell-and-tube heat exchanger is the key componentof waste boiler applied abundantly in industry. Becauseof the extfCme flow complexity, it is very difficult topredict the heat transfer and pressure drop characteristics.The vortex and flow stagnation will lead to thedeterioration of heat transfer, deposition of scale andcormsionll]. So the investigation of the characteristics offlow across the tube bundle in shell side is of practicalimportance. Moreovef, it is of theoretical impo…  相似文献   

4.
    
The performance of oscillating water column (OWC) systems depends on a number of factors in a complex manner. The objective of this work is to analyse the influence of the wave conditions, the damping caused by the turbine and the tidal level on the efficiency of the conversion from wave to pneumatic energy that occurs in the OWC chamber. To achieve this, a comprehensive experimental campaign is carried out, involving in total 387 tests of a model OWC under varying wave conditions (both with regular and irregular waves), damping coefficients and tidal levels. It is found that the damping exerted by the turbine is the factor that most affects the chamber efficiency—even more than the wave conditions. It follows that a proper selection of the turbine is crucial not only to the performance of the turbine itself but also to that of the chamber, which reflects the importance of the turbine–chamber coupling in OWC systems. The next factor in order of importance is the wave period. Finally, we find that the influence of the tidal level, which is examined in this work for the first time, is significant under certain conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
    
Dynamic stall is a relevant phenomenon in the design and operation of a vertical axis wind turbine (VAWT) as it impacts loading, control and wake dynamics. Although streamtube models and single‐wake vortex models are commonly used for VAWT simulation, they either do not explicitly simulate the distribution of vorticity in the wake (streamtube models) or simplify it into a single‐wake release point (single‐wake vortex models). This can lead to inaccurate predictions of the vorticity distribution and wake dynamics, and therefore of the induction field, rotor loading and wake development, including wake mixing and re‐energizing. In this work, we use a double‐wake panel model developed for the simulation of dynamic stall in a VAWT to analyse (i) what is the flow field in dynamic stall, including the induction field, (ii) what is the error due to assuming a simplified wake, in both vorticity distribution and induction and (iii) how an incorrect simulation of the vorticity distribution can affect the prediction of the dynamics of the near and far wake. The results demonstrate that for mild separation (tip speed ratio λ≥3), single‐wake models can produce acceptable results. However, for lower tip speed ratios (λ < 3), the inaccuracy in the prediction of loads, induction field and vorticity distribution becomes significant because of an inadequate representation of the wake dynamics. These results imply that using lower order models can lead to inaccurate estimations of loads, performance and power control requirements at low tip speed ratios. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
    
Rolf‐Erik Keck 《风能》2015,18(9):1579-1591
This paper presents validation for using the standalone implementation of the dynamic wake meandering (DWM) model to conduct numerical simulations of power production of rows of wind turbines. The standalone DWM model is an alternative formulation of the conventional DWM model that does not require information exchange with an aeroelastic code. As a consequence, the standalone DWM model has significantly shorter computational times and lower demands on the user environment. The drawback of the standalone DWM model is that it does not have the capability to predict turbine loads. Instead, it should be seen as an alternative for simulating the power production of a wind farm. The main advantage of the standalone DWM model is the ability to capture the key physics for wake dynamics such as the turbine specific induction, the build‐up of wake turbulence and wake deficit in the wind farm, and the effect of ambient turbulence intensity and atmospheric stability. The predicted power production of the standalone DWM model is compared with that of full scale measurements from Horns Rev, Lillgrund, Nysted and Weingermeer wind farms. Overall, the difference between the models predictions and the reference data is on the order of 5%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
    
The aim of this work is to investigate the atmospheric boundary‐layer (ABL) flow and the wind turbine wake over forests with varying leaf area densities (LAD). The forest LAD profile used in this study is based on a real forest site, Ryningsnäs, located in Sweden. The reference turbine used to model the wake is a well‐documented 5‐MW turbine, which is implemented in the simulations using an actuator line model (ALM). All simulations are carried out with openFOAM using the Reynolds averaged Navier‐Stokes (RANS) approach. Twelve forest cases with leaf area index (LAI) ranging from 0.42 to 8.5 are considered. Results show that the mean velocity decreases with increasing LAI within the forest canopy, but increases with LAI above the hub height. Meanwhile, the turbulent kinetic energy (TKE) varies nonmonotonically with forest density. The TKE increases with forest density and reaches to its maximum at an average LAI of 1.70, afterwards, it decreases gradually as the density increases. It is also observed that the forest density has a clear role in the wake development and recovery. Comparisons between no‐forest and forest cases show that the forest characteristics help in damping the added turbulence from the turbine. As a consequence, the forest with the highest upstream turbulence has the shortest wake downstream of the turbine.  相似文献   

8.
    
The aerodynamic interactions that can occur within a wind farm can result in the constituent turbines generating a lower power output than would be possible if each of the turbines were operated in isolation. Tightening of the constraints on the siting of wind farms is likely to increase the scale of the problem in the future. The aerodynamic performance of turbine rotors and the mechanisms that couple the fluid dynamics of multiple rotors can be most readily understood by simplifying the problem and considering the interaction between only two rotors. The aerodynamic interaction between two rotors in both co‐axial and offset configurations has been simulated using the Vorticity Transport Model. The aerodynamic interaction is a function of the tip speed ratio, and both the streamwise and crosswind separation between the rotors. The simulations show that the momentum deficit at a turbine operating within the wake developed by the rotor of a second turbine is governed by the development of instabilities within the wake of the upwind rotor, and the ensuing structure of the wake as it impinges on the downwind rotor. If the wind farm configuration or wind conditions are such that a turbine rotor is subject to partial impingement by the wake produced by an upstream turbine, then significant unsteadiness in the aerodynamic loading on the rotor blades of the downwind turbine can result, and this unsteadiness can have considerable implications for the fatigue life of the blade structure and rotor hub. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
    
A 2D vortex panel model with a viscous boundary layer formulation has been developed for the numerical simulation of a vertical axis wind turbine (VAWT), including the operation in dynamic stall. The model uses the ‘double wake’ concept to reproduce the main features of the unsteady separated flow, including the formation and shedding of strong vortical structures and the wake–blade interaction. The potential flow equations are solved together with the integral boundary layer equations by using a semi‐inverse iterative algorithm. A new criterion for the reattachment of the boundary layer during the downstroke of a dynamically stalled aerofoil is implemented. The model has been validated against experimental data of steady aerofoils and pitching aerofoils in dynamic stall at high and low Reynolds numbers (Re = 1.5 × 106 and Re = 5 × 104). For the low Reynolds number case, time‐resolved 2D particle image velocimetry (PIV) measurements have been performed on a pitching NACA 0012 aerofoil in dynamic stall. The PIV vorticity fields past the oscillating aerofoil are used to test the model capability of capturing the formation, growth and release of the strong leading edge vortex that characterizes the dynamic stall. Furthermore, the forces extracted from the PIV velocity fields are compared with the predicted ones for a quantitative validation of the model. Finally, the model is applied to the computation of the wake flow past a VAWT in dynamic stall; the predicted vorticity fields and forces are in good agreement with phase‐locked PIV data and CFD‐DES available in the literature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
    
Aerodynamic and structural dynamic performance analysis of modern wind turbines are routinely estimated in the wind energy field using computational tools known as aeroelastic codes. Most aeroelastic codes use the blade element momentum (BEM) technique to model the rotor aerodynamics and a modal, multi‐body or the finite‐element approach to model the turbine structural dynamics. The present work describes the development of a novel aeroelastic code that combines a three‐dimensional viscous–inviscid interactive method, method for interactive rotor aerodynamic simulations (MIRAS), with the structural dynamics model used in the aeroelastic code FLEX5. The new code, called MIRAS‐FLEX, is an improvement on standard aeroelastic codes because it uses a more advanced aerodynamic model than BEM. With the new aeroelastic code, more physical aerodynamic predictions than BEM can be obtained as BEM uses empirical relations, such as tip loss corrections, to determine the flow around a rotor. Although more costly than BEM, a small cluster is sufficient to run MIRAS‐FLEX in a fast and easy way. MIRAS‐FLEX is compared against the widely used FLEX5 and FAST, as well as the participant codes from the Offshore Code Comparison Collaboration Project. Simulation tests consist of steady wind inflow conditions with different combinations of yaw error, wind shear, tower shadow and turbine‐elastic modeling. Turbulent inflow created by using a Mann box is also considered. MIRAS‐FLEX results, such as blade tip deflections and root‐bending moments, are generally in good agreement with the other codes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
    
In this paper, an analytical approach and two numerical models have been developed to study an energy‐harvesting device for micropower generation. This device uses wind energy to oscillate a cantilevered beam attached to a piezoelectric layer for generating electric energy output. The analytical approach and the first numerical model consider the fluid–structure interaction phenomenon in the harvester performance. The equations governing beam oscillations and airflow have been coupled to a set of four differential equations in the analytical approach. This set of equations has been solved to determine the beam deflection and the air pressure variation with time. The numerical methods have been conducted by employing a commercial software. The results of the analytical method and the first numerical model have been compared in different working conditions, and their credibility has been discussed. In the second numerical model, the electromechanical performance of the piezoelectric material has also been incorporated in the harvester device analysis. This model has been verified against experimental data for the output voltage and power of the device available in the literature. Finally, the effect of different geometrical parameters has been studied on the harvester performance, and suggestions have been made to improve the harvester efficiency.  相似文献   

12.
在风剪切来流风况下,对WindPACT 1.5MW风力机近尾迹流动特性进行了数值计算,同时研究了三种风剪切系数(0.1、0.2和0.3)对风力机近尾迹流动特性的影响。基于雷诺平均不可压N-S方程的计算流体力学方法数值模拟三维非定常的风力机流场,其中,湍流模型选取Shear Stress Transport k-ω湍流模型。研究结果表明:在近尾迹区域,来流空气的轴向诱导因子和切向诱导因子受到旋转叶片的强烈影响,并在风力机下游形成明显的轴向速度亏损。这种轴向速度亏损随空气向下游流动过程中,逐渐减弱。轴向诱导因子和切向诱导因子受风剪切影响,呈非周期性分布,并且风剪切系数增加,这种影响随之增强。  相似文献   

13.
    
Individual turbine location within a wind plant defines the flow characterisitcs experienced by a given turbine. Irregular turbine arrays and inflow misalignment can reduce plant efficiency by producing highly asymmetric wakes with enhanced downstream longevity. Changes in wake dynamics as a result of turbine position were quantified in a wind tunnel experiment. Scale model turbines with a rotor diameter of 20 cm and a hub height of 24 cm were placed in symmetric, asymmetric, and rotated configurations. Simultaneous hub height velocity measurements were recorded at 11 spanwise locations for three distances downstream of the turbine array under two inflow conditions. Wake interactions are described in terms of the time‐average streamwise velocity and turbulence intensity as well as the displacement, momentum, and energy thicknesses. The effects of wake merging on power generation are quantified, and the two‐point correlation is used to examine symmetry in the mean velocity between wakes. The results indicate that both asymmetric and rotated wind plant arrangements can produce long‐lasting wakes. At shallow angles, rotated configurations compound the effects of asymmetric arrangements and greatly increase downstream wake persistence.  相似文献   

14.
    
An experimental study of the near wake up to four rotor diameters behind a model wind turbine rotor with two different wing tip configurations is performed. A straight‐cut wing tip and a downstream‐facing winglet shape are compared on the same two‐bladed rotor operated at its design tip speed ratio. Phase‐averaged measurements of the velocity vector are synchronized with the rotor position, visualizing the downstream location of tip vortex interaction for the two blade tip configurations. The mean streamwise velocity is found not to be strongly affected by the presence of winglet tip extensions, suggesting an insignificant effect of winglets on the time‐averaged inflow conditions of a possible downstream wind turbine. An analysis of the phase‐averaged vorticity, however, reveals a significantly earlier tip vortex interaction and breakup for the wingletted rotor. In contradistinction, the tip vortices formed behind the reference configuration are assessed to be more stable and start merging into larger turbulent structures significantly further downstream. These results indicate that an optimized winglet design can not only contribute to a higher energy extraction in a rotor's tip region but also can positively affect the wake's mean kinetic energy recovery by stimulating a faster tip vortex interaction.  相似文献   

15.
    
The accurate prediction of the aerodynamics and performance of vertical‐axis wind turbines is essential if their design is to be improved but poses a significant challenge to numerical simulation tools. The cyclic motion of the blades induces large variations in the angle of attack of the blades that can manifest as dynamic stall. In addition, predicting the interaction between the blades and the wake developed by the rotor requires a high‐fidelity representation of the vortical structures within the flow field in which the turbine operates. The aerodynamic performance and wake dynamics of a Darrieus‐type vertical‐axis wind turbine consisting of two straight blades is simulated using Brown's Vorticity Transport Model. The predicted variation with azimuth of the normal and tangential force on the turbine blades compares well with experimental measurements. The interaction between the blades and the vortices that are shed and trailed in previous revolutions of the turbine is shown to have a significant effect on the distribution of aerodynamic loading on the blades. Furthermore, it is suggested that the disagreement between experimental and numerical data that has been presented in previous studies arises because the blade–vortex interactions on the rotor were not modelled with sufficient fidelity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
    
Over the last decades, wind energy industry has been growing with an increasing rate. This is highly relevant to the need of new wind farm site selection with certain standards such as high wind potential and accessibility. Even in windy areas, low wind speed persistence can be characterized as an extreme (non‐frequent) atmospheric condition for the electricity network as it can lead to low or no energy production. The current work is focused on the estimation of the duration and the frequency of occurrence of low wind speed events using the principles of extreme value theory. The two methods used are the ‘intensity given duration’ and the ‘duration given intensity’ that lead to the same point from different perspectives. The data used is derived from a 10 year, hindcast, high‐resolution database developed by the Atmospheric Modeling and Weather Forecasting Group of the University of Athens. The great potential and multinational interest concerning energy applications in the North Sea has led to its selection as a study area. The outcome of the study includes the development of intensity–duration–frequency curves as well as a comparison between the two methodologies adopted. Based on these, the largest period of no energy production for a preselected probability of occurrence is estimated for the area of interest. The results of this work could be potentially supportive for studying the regional climatology. Such information can be included in risk assessment techniques and can be applied among others for energy activities. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
  总被引:1,自引:0,他引:1  
  相似文献   

18.
    
Wakes and wake interactions in wind turbine arrays diminish energy output and raise the risk of structural fatigue; hence, comprehending the features of rotor–wake interactions is of practical relevance. Previous studies suggest that vertical axis wind turbines (VAWTs) can facilitate a quicker wake recovery. This study experimentally investigates the rotor–wake and wake–wake interaction of VAWTs; different pitch angles of the blades of the upwind VAWT are considered to assess the interactions for different wake deflections. With stereoscopic particle image velocimetry, the wake interactions of two VAWTs are analysed in nine distinct wake deflection and rotor location configurations. The time-average velocity fields at several planes upwind and downwind from the rotors are measured. Additionally, time-average loads on the VAWTs are measured via force balances. The results validate the rapid wake recovery and the efficacy of wake deflection, which increases the available power in the second rotor.  相似文献   

19.
    
Large-eddy simulation (LES) has been adopted to study wind turbine wakes because it can capture fine-scale details of turbulent wind flows and interactions with wind turbines. Here, we use the LES version of the Weather Research and Forecasting (WRF) model with an actuator disk model to gain insights on several wake effects that have been traditionally difficult to measure. The first finding is that the wake has a “dual nature,” meaning that the wind speed deficit behaves differently from the added turbulent kinetic energy (TKE) and the two are not co-located in space. For example, the wind speed deficit peaks at hub height and reaches the ground within 8D (D is the rotor diameter), but added TKE peaks near the rotor tip and generally remains aloft. Second, temperature changes near the ground are driven by the added TKE in the rotor area and by atmospheric stability. The combination of these two factors determines the sign and intensity of the vertical heat flux divergence below the rotor, with convergence and warming associated with stable conditions and weak divergence and modest cooling with unstable conditions. Third, wakes do not expand indefinitely, as suggested by similarity theory applied to the wind speed deficit, but eventually stop expanding and actually contract, at different rates depending on atmospheric stability. The implication of these findings is that, in order to study wakes, it is not sufficient to focus on wind speed deficit alone, because TKE is also important and yet behaves differently from the wind speed deficit.  相似文献   

20.
Droplets-laden turbulent flow downstream of a sudden pipe expansion has been investigated by using Euler/Euler two-fluid model for the gaseous and dispersed phases. Significant increase of heat transfer in separated flow at the adding of evaporating droplets has been demonstrated (more than 2 times compare with one-phase flow at the value of mass concentration of droplets ML1  0.05). Addition of dispersed phase to the turbulent gas flow results in insignificant increase of the reattachment length. Low-inertia droplets (d1  50 μm) are well entrained into the circulation flow and present over the whole pipe section. Large particles (d1 ≈ 100 μm) go through the shear layer not getting into the detached area. Comparison with experimental data on separated gas–droplets flows behind the plane backward-facing step has been carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号