首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
We have compared expression systems based on autonomously replicating vectors in the yeasts Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Hansenula polymorpha and Yarrowia lipolytica in order to identify a more suitable host organism for use in the expression cloning method (Dalbøge and Heldt-Hansen, 1994) in which S. cerevisiae has traditionally been used. The capacity of the expression systems to secrete active forms of six fungal genes encoding the enzymes galactanase, lipase, polygalacturonase, xylanase and two cellulases was examined, as well as glycosylation pattern, plasmid stability and transformation frequency. All of the examined alternative hosts were able to secrete more active enzyme than S. cerevisiae but the relative expression capacity of the individual hosts varied significantly in a gene-dependent manner. One of the most attractive of the alternative host organisms, Y. lipolytica, yielded an increase which ranged from 4·5 times to more than two orders of magnitude. As the initially employed Y. lipolytica XPR2 promoter is unfit in the context of expression cloning, two novel promoter sequences for highly expressed genes present in only one copy on the genome were isolated. Based on sequence homology, the genes were identified as TEF, encoding translation elongation factor-1α and RPS7, encoding ribosomal protein S7. Using the heterologous cellulase II (celII) and xylanase I (xylI) as reporter genes, the effect of the new promoters was measured in qualitative and quantitative assays. Based on the present tests of the new promoters, Y. lipolytica appears as a highly attractive alternative to S. cerevisiae as a host organism for expression cloning. GenBank Accession Numbers: TEF gene promoter sequence: AF054508; RPS7 gene promoter sequence: AF054509. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
Cation–chloride co‐transporters serve to transport Cl and alkali metal cations. Whereas a large family of these exists in higher eukaryotes, yeasts only possess one cation–chloride co‐transporter, Vhc1, localized to the vacuolar membrane. In this study, the human cation–chloride co‐transporter NKCC2 complemented the phenotype of VHC1 deletion in Saccharomyces cerevisiae and its activity controlled the growth of salt‐sensitive yeast cells in the presence of high KCl, NaCl and LiCl. A S. cerevisiae mutant lacking plasma‐membrane alkali–metal cation exporters Nha1 and Ena1‐5 and the vacuolar cation–chloride co‐transporter Vhc1 is highly sensitive to increased concentrations of alkali–metal cations, and it proved to be a suitable model for characterizing the substrate specificity and transport activity of human wild‐type and mutated cation–chloride co‐transporters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
4.
The expression of the PMA1 and PMA2 genes during Saccharomyces cerevisiae growth in medium with glucose plus increasing concentrations of ethanol was monitored by using PMA1-lacZ and PMA2-lacZ fusions and Northern blot hybridizations of total RNA probed with PMA1 gene. The presence of sub-lethal concentrations of ethanol enhanced the expression of PMA2 whereas it reduced the expression of PMA1. The inhibition of PMA1 expression by ethanol corresponded to a decrease in the content of plasma membrane ATPase as quantified by immunoassays. Although an apparent correspondence could exist between the increase of plasma membrane ATPase activity and the level of PMA2 expression, the maximal level of PMA2 expression remained about 200 times lower than PMA1. On the other hand, ethanol activated the plasma membrane H+-ATPase activity from a strain expressing only the PMA1 ATPase but did not activate that from a strain expressing only the PMA2 ATPase. These results provide evidence that in the presence of ethanol it is the PMA1 ATPase which is activated, probably by a post-translational mechanism and that the PMA2 ATPase is not involved.  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号