首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate a self-assembled reagentless biosensor based on a modular design strategy that functions in the detection of TNT and related explosive compounds. The sensor consists of a dye-labeled anti-TNT antibody fragment that interacts with a cofunctional surface-tethered DNA arm. The arm consists of a flexible biotinylated DNA oligonucleotide base specifically modified with a dye and terminating in a TNB recognition element, which is an analogue of TNT. Both of these elements are tethered to a Neutravidin surface with the TNB recognition element bound in the antibody fragment binding site, bringing the two dyes into proximity and establishing a baseline level of fluorescence resonance energy transfer (FRET). Addition of TNT, or related explosive compounds, to the sensor environment alters FRET in a concentration-dependent manner. The sensor can be regenerated repeatedly through washing away of analyte and specific reformation of the sensor assembly, allowing for subsequent detection events. Sensor dynamic range can be usefully altered through the addition of a DNA oligonucleotide that hybridizes to a portion of the cofunctional arm. The modular design of the sensor demonstrates that it can be easily adapted to detect a variety of different analytes.  相似文献   

2.
Self-assembled nanoscale biosensors based on quantum dot FRET donors   总被引:4,自引:0,他引:4  
The potential of luminescent semiconductor quantum dots (QDs) to enable development of hybrid inorganic-bioreceptor sensing materials has remained largely unrealized. We report the design, formation and testing of QD-protein assemblies that function as chemical sensors. In these assemblies, multiple copies of Escherichia coli maltose-binding protein (MBP) coordinate to each QD by a C-terminal oligohistidine segment and function as sugar receptors. Sensors are self-assembled in solution in a controllable manner. In one configuration, a beta-cyclodextrin-QSY9 dark quencher conjugate bound in the MBP saccharide binding site results in fluorescence resonance energy-transfer (FRET) quenching of QD photoluminescence. Added maltose displaces the beta-cyclodextrin-QSY9, and QD photoluminescence increases in a systematic manner. A second maltose sensor assembly consists of QDs coupled with Cy3-labelled MBP bound to beta-cyclodextrin-Cy3.5. In this case, the QD donor drives sensor function through a two-step FRET mechanism that overcomes inherent QD donor-acceptor distance limitations. Quantum dot-biomolecule assemblies constructed using these methods may facilitate development of new hybrid sensing materials.  相似文献   

3.
4.
The class of fluorescence resonance energy transfer (FRET) protein biosensors that are useful for measuring protease activity is composed of a tandem fusion of yellow fluorescent protein (YFP), a cleavage recognition sequence, and cyan fluorescent protein (CFP). The dynamic range of these FRET-based protein biosensors is often weak, but applications such as high throughput drug screening require stronger dynamic ranges. Using the biosensor for the caspase-3 protease as an example, here we showed a computational approach to improve the FRET dynamic range based on the atomic structure of caspase-3 bound to its inhibitor. This result was verified from our experiments where the FRET dynamic range improved by at least 60% on average in both in vitro and in vivo contexts. In concept, the same strategy can be applied to improve dynamic range of other FRET-based protein biosensors for protease activity where there exist solved atomic structures for protein complexes.  相似文献   

5.
In aqueous solutions, the fluorescence of the intramolecular fluorescence resonance energy-transfer (FRET) system 1 was strongly quenched, because of close contact between the donor and acceptor moieties. FRET occurred, and the acceptor fluorescence was increased, by adding beta-cyclodextrin (beta-CD) to aqueous solutions of 1. Spectral analysis supported the idea that the FRET enhancement was due to the formation of an inclusion complex of the coumarin moiety in beta-CD, resulting in separation of the fluorophores. On the basis of this result, we propose that covalent binding of coumarin to beta-CD will provide a FRET cassette molecule. So, compound 2 bearing beta-CD covalently was designed and synthesized. Fluorescence intensity of 2 was enhanced markedly compared to the intensity of 3. Applying this FRET system, various FRET probes that will be useful for ratio imaging and also the high-throughput screening will be provided.  相似文献   

6.
A sensor system for the herbicide 2,4-dichlorophenoxy-acetic acid has been developed based on specific recognition of the analyte by a molecularly imprinted polymer and electrochemical detection using disposable screen-printed electrodes. The method involves a competitive binding step with a nonrelated electrochemically active probe. For batch binding assays, imprinted polymer particles are incubated in suspension with the analyte and the probe, followed by centrifugation and quantification of the unbound probe in the supernatant. Two different compounds, namely 2,4-dichlorophenol and homogentisic acid, were tested as potential electroactive probes. Both compounds could be conveniently detected by differential-pulse voltammetry on screen-printed, solvent-resistant three-electrode systems having carbon working electrodes. Whereas 2,4-dichlorophenol showed very high nonspecific binding to the polymer, homogentisic acid bound specifically to the imprinted sites and thus allowed calibration curves for the analyte in the micromolar range to be recorded. An integrated sensor was developed by coating the imprinted polymer particles directly onto the working electrode. Following incubation of the modified electrode in a solution containing the analyte and the probe, the bound fraction of the probe is quantified. This system provides a cheap, disposable sensor for rapid determination of environmentally relevant and other analytes.  相似文献   

7.
Nanoscale pores have potential to be used as biosensors and are an established tool for analysing the structure and composition of single DNA or RNA molecules. Recently, nanopores have been used to measure the binding of enzymes to their DNA substrates. In this technique, a polynucleotide bound to an enzyme is drawn into the nanopore by an applied voltage. The force exerted on the charged backbone of the polynucleotide by the electric field is used to examine the enzyme-polynucleotide interactions. Here we show that a nanopore sensor can accurately identify DNA templates bound in the catalytic site of individual DNA polymerase molecules. Discrimination among unbound DNA, binary DNA/polymerase complexes, and ternary DNA/polymerase/deoxynucleotide triphosphate complexes was achieved in real time using finite state machine logic. This technique is applicable to numerous enzymes that bind or modify DNA or RNA including exonucleases, kinases and other polymerases.  相似文献   

8.
Wang Y  Bao L  Liu Z  Pang DW 《Analytical chemistry》2011,83(21):8130-8137
We presented a new aptamer biosensor for thrombin in this work, which was based on fluorescence resonance energy transfer (FRET) from upconverting phosphors (UCPs) to carbon nanoparticles (CNPs). The poly(acrylic acid) (PAA) functionalized UCPs were covalently tagged with a thrombin aptamer (5'-NH(2)- GGTTGGTGTGGTTGG-3'), which bound to the surface of CNPs through π-π stacking interaction. As a result, the energy donor and acceptor were taken into close proximity, leading to the quenching of fluorescence of UCPs. A maximum fluorescence quenching rate of 89% was acquired under optimized conditions. In the presence of thrombin, which induced the aptamer to form quadruplex structure, the π-π interaction was weakened, and thus, the acceptor was separated from the donor blocking the FRET process. The fluorescence of UCPs was therefore restored in a thrombin concentration-dependent manner, which built the foundation of thrombin quantification. The sensor provided a linear range from 0.5 to 20 nM for thrombin with a detection limit of 0.18 nM in an aqueous buffer. The same linear range was obtained in spiked human serum samples with a slightly higher detection limit (0.25 nM), demonstrating high robustness of the sensor in a complex biological sample matrix. As a practical application, the sensor was used to monitor thrombin level in human plasma with satisfactory results obtained. This is the first time that UCPs and CNPs were employed as a donor-acceptor pair to construct FRET-based biosensors, which utilized both the photophysical merits of UCPs and the superquenching ability of CNPs and thus afforded favorable analytical performances. This work also opened the opportunity to develop biosensors for other targets using this UCPs-CNPs system.  相似文献   

9.
The online characterization and detection of individual droplets at high speeds, low analyte concentrations, and perfect detection efficiencies is a significant challenge underpinning the application of microfluidic droplet reactors to high-throughput chemistry and biology. Herein, we describe the integration of confocal fluorescence spectroscopy as a high-efficiency detection method for droplet-based microfluidics. Issues such as surface contamination, rapid mixing, and rapid detection, as well as low detections limits have been addressed with the approach described when compared to conventional laminar flow-based fluidics. Using such a system, droplet size, droplet shape, droplet formation frequencies, and droplet compositions can be measured accurately and precisely at kilohertz frequencies. Taking advantage of this approach, we demonstrate a high-throughput biological assay based on fluorescence resonance energy transfer (FRET). By attaching a FRET donor (Alexa Fluor 488) to streptavidin and labeling a FRET acceptor (Alexa Fluor 647) on one DNA strand and biotin on the complementary strand, donor and acceptor molecules are brought in proximity due to streptavidin-biotin binding, resulting in FRET. Fluorescence bursts of the donor and acceptor from each droplet can be monitored simultaneously using separate avalanche photodiode detectors operating in single photon counting mode. Binding assays were investigated and compared between fixed streptavidin and DNA concentrations. Binding curves fit perfectly to Hill-Waud models, and the binding ratio between streptavidin and biotin was evaluated and found to be in agreement with the biotin binding sites on streptavidin. FRET efficiency for this FRET pair was also investigated from the binding results. Efficiency results show that this detection system can precisely measure FRET even at low FRET efficiencies.  相似文献   

10.
将人神经生长因子基因(hNGF)克隆到pMalC2质粒中,构建了表达产物为麦芽糖结合蛋白(MBP)与hNGF的融合蛋白重组质粒。经由内切酶再水解及DNA序列测定等分析表明,重组质粒含hNGF基因(360bP),该质粒在E·Coli中的表达产物为融合蛋白MBP-hNGF(55kd),光密度扫描表明,其表达量约为30%。  相似文献   

11.
Liu J  Lu Y 《Analytical chemistry》2003,75(23):6666-6672
A previously reported DNAzyme-based biosensor for Pb(2+) has shown high sensitivity and selectivity at 4 degrees C. In the system, the substrate and the enzyme strand of the DNAzyme are labeled with a fluorophore and a quencher, respectively. In the presence of Pb(2+), the substrate strand is cleaved by the enzyme strand, and the release of the cleaved fragment results in significant fluorescence increase. However, the performance of the sensor decreases considerably if the temperature is raised to room temperature because of high background fluorescence. A careful analysis of the sensor system, including measurement of the melting curve and fluorescence resonance energy-transfer (FRET) study of the free substrate, suggests that a fraction of the fluorophore-labeled substrate strand is dissociated from the enzyme strand, resulting in elevated background fluorescence signals at room temperature. To overcome this problem, we designed a new sensor system by introducing both inter- and intramolecular quenchers. The design was aided by the FRET study that showed the dissociated substrate maintained a random coil conformation with an end-to-end distance of approximately 39 A, which is much shorter than that of the fully extended DNA. With this new design, the background fluorescence was significantly suppressed, with 660% increase of fluorescence intensity as compared to 60% increase for the previous design. This suppression of background fluorescence signals was achieved without losing selectivity of the sensor. The new design makes it possible to use the sensor for practical applications in a wide temperature range. The design principle presented here should be applicable to other nucleic acid-based biosensors to decrease background fluorescence.  相似文献   

12.
A highly sensitive surface plasmon resonance (SPR) biosensor employing magnetic nanoparticle (MNP) assays is presented. In the reported approach, MNPs simultaneously served as "vehicles" for rapid delivery of target analyte from a sample to the sensor surface and as labels increasing the measured refractive index changes that are associated with the binding of target analyte. An optical setup based on grating-coupled surface plasmon resonance (GC-SPR) was used with a magnetic field gradient applied through the sensor chip for manipulating with MNPs on its surface. Iron oxide MNPs and a sensor surface with metallic diffraction grating were modified with antibodies that specifically recognize different epitopes of the analyte of interest. The sensitivity of the biosensor was investigated as a function of mass transport of the analyte to the sensor surface driven by diffusion (free analyte) or by the magnetic field gradient (analyte bound to MNPs). Immunoassay-based detection of β human chorionic gonadotropin (βhCG) was implemented to evaluate the sensitivity of the MNP-enhanced GC-SPR biosensor scheme. The results reveal that the sensitivity of βhCG detection was improved by 4 orders of magnitude compared with the regular SPR sensor with direct detection format, and a limit of detection below pM was achieved.  相似文献   

13.
Resonant nanoelectromechanical systems (NEMS) are being actively investigated as sensitive mass detectors for applications such as chemical and biological sensing. We demonstrate that highly uniform arrays of nanomechanical resonators can be used to detect the binding of individual DNA molecules through resonant frequency shifts resulting from the added mass of bound analyte. Localized binding sites created with gold nanodots create a calibrated response with sufficient sensitivity and accuracy to count small numbers of bound molecules. The amount of nonspecifically bound material from solution, a fundamental issue in any ultra-sensitive assay, was measured to be less than the mass of one DNA molecule, allowing us to detect a single 1587 bp DNA molecule.  相似文献   

14.
Detection limits for nanoscale biosensors   总被引:2,自引:0,他引:2  
We examine through analytical calculations and finite element simulations how the detection efficiency of disk and wire-like biosensors in unmixed fluids varies with size from the micrometer to nanometer scales. Specifically, we determine the total flux of DNA-like analyte molecules on a sensor as a function of time and flow rate for a sensor incorporated into a microfluidic system. In all cases, sensor size and shape profoundly affect the total analyte flux. The calculations reveal that reported femtomolar detection limits for biomolecular assays are very likely an analyte transport limitation, not a signal transduction limitation. We conclude that without directed transport of biomolecules, individual nanoscale sensors will be limited to picomolar-order sensitivity for practical time scales.  相似文献   

15.
基于分子印迹技术的仿生化学传感器   总被引:7,自引:0,他引:7  
分子印迹技术是近年来兴起的一种新型高分子合成技术,用它制备的印迹高分子具有高度的特定识别性,因此可用来做传感器的识别元素。文中叙述了印迹高分子的制备,其作为传感器识别元件的机理以及印迹传感器的应用。  相似文献   

16.
An aptamer-based quartz crystal protein biosensor   总被引:13,自引:0,他引:13  
We developed a quartz crystal biosensor designed to detect concentrations and ligand affinity parameters of free unlabeled proteins in real time. Using a model system with human IgE as the analyte and single-stranded DNA aptamers or an anti-IgE antibody as immobilized ligands, we could demonstrate that aptamers were equivalent to antibodies in terms of specificity and sensitivity. Both receptor types selectively detected 0.5 nmol/L of IgE. In addition, the aptamer receptors tolerated repeated affine layer regeneration after ligand binding and recycling of the biosensor with little loss of sensitivity. Because of the small size and nonprotein nature of the aptamers, they were immobilized in a dense, well-oriented manner, thus extending the linear detection range to 10-fold higher concentrations of IgE. In addition to demonstrating for the first time that an aptamer-based biosensor can specifically and quantitatively detect an analyte in various complex protein mixes, the aptamer-ligand proved to be relatively heat resistant and stable over several weeks. Since aptamers consist of nucleic acids, well-established chemistry can be applied to produce optimized affine layers on biosensors that may be developed to specifically detect proteins in solution for analysis of proteomes.  相似文献   

17.
A naturally occurring aptazyme, the glmS ribozyme, is adapted to an assay for glucosamine 6-phosphate, an effector molecule for the aptazyme. In the assay, binding of analyte allosterically activates aptazyme to cleave a fluorescently labeled oligonucleotide substrate. The extent of reaction, and hence analyte concentration, is detected by either fluorescence resonance energy transfer (FRET) or capillary electrophoresis with laser-induced fluorescence (CE-LIF). With FRET, assay signal is the rate of increase in FRET in presence of analyte. With CE-LIF, the assay signal is the peak height of cleavage product formed after a fixed incubation time. The assay has a linear response up to 100 (CE-LIF) or 500 microM (FRET) and detection limit of approximately 500 nM for glucosamine 6-phosphate under single-turnover conditions. When substrate is present in excess of the aptazyme, it is possible to amplify the signal by multiple turnovers to achieve a 13-fold improvement in sensitivity and detection limit of 50 nM. Successful signal amplification requires a temperature cycle to alternately dissociate cleaved substrate and allow fresh substrate to bind aptazyme. The results show that aptazymes have potential utility as analytical reagents for quantification of effector molecules.  相似文献   

18.
The attachment and interactions of analyte receptor biomolecules at solid-liquid interfaces are critical to development of hybrid biological-synthetic sensor devices across all size regimes. We use protein engineering approaches to engineer the sensing interface of biochemically modified field effect transistor sensors (BioFET). To date, we have deposited analyte receptor proteins on FET sensing channels by direct adsorption, used self-assembled monolayers to tether receptor proteins to planar FET SiO2 sensing gates and demonstrated interface biochemical function and electrical function of the corresponding sensors. We have also used phage display to identify short peptides that recognize thermally grown SiO2. Our interest in these peptides is as affinity domains that can be inserted as translational fusions into receptor proteins (antibody fragments or other molecules) to drive oriented interaction with FET sensing surfaces. We have also identified single-chain fragment variables (scFvs, antibody fragments) that recognize an analyte of interest as potential sensor receptors. In addition, we have developed a protein engineering technology (scanning circular permutagenesis) that allows us to alter protein topography to manipulate the position of functional domains of the protein relative to the BioFET sensing surface.  相似文献   

19.
Optical, evanescent wave biosensors have become popular tools for quantitatively characterizing the kinetic properties of biomolecular interactions. Analyzing data from biosensor experiments, however, is often complicated when mass-transfer influences the detection kinetics. We present a computational, transport-kinetic model that can be used to analyze transport-limited biosensor data. This model describes a typical biosensor experiment in which a soluble analyte diffuses through a flow chamber and binds to a receptor immobilized on the transducer surface. Analyte transport in the flow chamber is described by the diffusion equation while the kinetics of analyte-surface association and dissociation are captured by a reactive boundary condition at the sensor surface. Numerical integration of the model equations and nonlinear least-squares fitting are used to compare model kinetic data to experimental results and generate estimates for the rate constants that describe analyte detection. To demonstrate the feasibility of this model, we use it to analyze data collected for the binding of fluorescently labeled trinitrobenzene to immobilized monoclonal anti-TNT antibodies. A successful analysis of this antigen-antibody interaction is presented for data collected with a fluorescence-based fiber-optic immunoassay. The results of this analysis are compared with the results obtained with existing methods for analyzing diffusion-limited kinetic data.  相似文献   

20.
Surface plasmon resonance (SPR) biosensors prepared using optical fibers can be used as a cost-effective and relatively simple-to-implement alternative to well established biosensor platforms for monitoring biomolecular interactions in situ or possibly in vivo. The fiber biosensor presented in this study utilizes an in-fiber tilted Bragg grating to excite the SPR on the surface of the sensor over a large range of external medium refractive indices, with minimal cross-sensitivity to temperature and without compromising the structural integrity of the fiber. The label-free biorecognition scheme used demonstrates that the sensor relies on the functionalization of the gold-coated fiber with aptamers, synthetic DNA sequences that bind with high specificity to a given target. In addition to monitoring the functionalization of the fiber by the aptamers in real-time, the results also show how the fiber biosensor can detect the presence of the aptamer's target, in various concentrations of thrombin in buffer and serum solutions. The findings also show how the SPR biosensor can be used to evaluate the dissociation constant (K(d)), as the binding constant agrees with values already reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号