Uranyl ion‐specific DNAzyme : A DNAzyme (lower strand) cleaves the substrate (upper strand) in the presence of the uranyl ion. The enzyme folds into a bulged three‐way‐junction structure with catalytically important nucleotides residing in the bulge. A highly conserved G?A mismatch is also crucial for the enzyme's activity.
DNAzymes are catalytically active DNA molecules that use metal cofactors for their enzymatic functions. While a growing number of DNAzymes with diverse functions and metal selectivities have been reported, the relationships between metal ion selectivity, conserved sequences and structures responsible for selectivity remain to be elucidated. To address this issue, we report biochemical assays of a family of previously reported in vitro selected DNAzymes. This family includes the clone 11 DNAzyme, which was isolated by positive and negative selection, and the clone 18 DNAzyme, which was isolated by positive selection alone. The clone 11 DNAzyme has a higher selectivity for Co(2+) over Pb(2+) compared with clone 18. The reasons for this difference are explored here through phylogenetic comparison, mutational analysis and stepwise truncation. A novel DNAzyme truncation method incorporated a nick in the middle of the DNAzyme to allow for truncation close to the nicked site while preserving peripheral sequences at both ends of the DNAzyme. The results demonstrate that peripheral sequences within the substrate binding arms, most notably the stem loop, loop II, are sufficient to restore its selectivity for Co(2+) over Pb(2+) to levels observed in clone 11. A comparison of these sequences' secondary structures and Co(2+) selectivities suggested that metastable structures affect metal ion selectivity. The Co(2+) selectivity of the clone 11 DNAzyme showed that the metal ion binding and selectivities of small, in vitro selected DNAzymes may be more complex than previously appreciated, and that clone 11 may be more similar to larger ribozymes than to other small DNAzymes in its structural complexity and behavior. These factors should be taken into account when metal-ion selectivity is required in rationally designed DNAzymes and DNAzyme-based biosensors. 相似文献
Synchronized catalysis in native enzyme : We used a photoactive nanotrigger (NT) to study the initial electron transfer to FAD in native neuronal NOS catalysis. Modeling and fluorescence spectroscopy showed that selective NT binding to NADPH sites is able to override Phe1395 regulation, thus permitting ultrafast injection of electrons into the protein electron pathway. That NT initiation of flavoenzyme catalysis led to the formation of NO is promising for time‐resolved X‐ray and other cellular applications.
Isopenicillin N synthase (IPNS) is a nonheme iron(II)‐dependent oxidase that catalyses the central step in penicillin biosynthesis, conversion of the tripeptide δ‐L ‐α‐aminoadipoyl‐L ‐cysteinyl‐D ‐valine (ACV) to isopenicillin N (IPN). This report describes mechanistic studies using the analogue δ‐(L ‐α‐aminoadipoyl)‐(3S‐methyl)‐L ‐cysteine D ‐α‐hydroxyisovaleryl ester (ASmCOV), designed to intercept the catalytic cycle at an early stage. ASmCOV incorporates two modifications from the natural substrate: the second and third residues are joined by an ester, so this analogue lacks the key amide of ACV and cannot form a β‐lactam; and the cysteinyl residue is substituted at its β‐carbon, bearing a (3S)‐methyl group. It was anticipated that this methyl group will impinge directly on the site in which the co‐substrate dioxygen binds. The novel depsipeptide ASmCOV was prepared in 13 steps and crystallised with IPNS anaerobically. The 1.65 Å structure of the IPNS–FeII–ASmCOV complex reveals that the additional β‐methyl group is not oriented directly into the oxygen binding site, but does increase steric demand in the active site and increases disorder in the position of the isovaleryl side chain. Crystals of IPNS–FeII–ASmCOV were incubated with high‐pressure oxygen gas, driving substrate turnover to a single product, an ene‐thiol/C‐hydroxylated depsipeptide. A mechanism is proposed for the reaction of ASmCOV with IPNS, linking this result to previous crystallographic studies with related depsipeptides and solution‐phase experiments with cysteine‐methylated tripeptides. This result demonstrates that a (3S)‐methyl group at the substrate cysteinyl β‐carbon is not in itself a block to IPNS activity as previously proposed, and sheds further light on the steric complexities of IPNS catalysis.相似文献
Isopenicillin N synthase (IPNS) is a non-heme iron(ii)-dependent oxidase that is central to penicillin biosynthesis. Herein, we report mechanistic studies of the IPNS reaction in the crystalline state, using the substrate analogue delta-(L-alpha-aminoadipoyl)-(3R)-methyl-L-cysteine D-alpha-hydroxyisovaleryl ester (AmCOV) to probe the early stages of the catalytic cycle. The X-ray crystal structure of the anaerobic IPNS:Fe(II):AmCOV complex was solved to 1.40 A resolution, and it reveals several subtle differences in the active site relative to the complex of the enzyme with its natural substrate. The crystalline IPNS:Fe(II):AmCOV complex was then exposed to oxygen gas at high pressure; this brought about reaction to give what appears to be a hydroxymethyl/ene-thiol product. A mechanism for this reaction is proposed. These results offer further insight into the delicate interplay of steric and electronic effects in the IPNS active site and the mechanistic intricacies of this remarkable enzyme. 相似文献
The kinetics of the natural and accelerated photo-oxidation of low-denisty polyethylene (LDPE) films have been studied; different geographical locations have been selected for the natural tests, and a range of temperatures used in the accelerated experiments in a specially built temperature-controlled ultraviolet radiation enclosure. A meaningful correlation between natural and accelerated weathering results was established, by means of an adequate superposition of the effects of UV radiation exposure and temperature. Reasonably detailed and accurate, lumped-parameter, kinetic models of the photo-oxidation process have also been developed, to interpret and predict the results of measurements of carbonyl, hydroperoxide and vinyl absorbances as functions of time and temperature; the models predict the general experimental behaviour, and also that both the formation of hydroperoxides and carbonyl Norrish-I reactions are important initiation steps. More complex models have the potential of interpreting other fine details of the degradation behaviour, namely the generation of other chemical species, and the chain scission and cross-linking process which are directly related to changes in the mechanical properties. 相似文献
The effect on the heme environment upon unfolding Paracoccus versutus ferricytochrome c-550 and two site-directed variants, K99E and H118Q, has been assessed through a combination of peroxidase activity increase and one-dimensional NMR spectroscopy. At pH 4.5, the data are consistent with a low- to high-spin heme transition, with the K99E mutation resulting in a protein with increased peroxidase activity in the absence of or at low concentrations of denaturant. Furthermore, the mobility of the polypeptide chain at pH 4.5 for the wild-type protein has been monitored in the absence and presence of denaturant through heteronuclear NMR experiments. The results are discussed in terms of local stability differences between bacterial and mitochondrial cytochromes c that are inferred from peroxidase activity assays. At pH 7.0, a mixture of misligated heme states arising from protein-based ligands assigned to lysine and histidine is detected. At low denaturant concentrations, these partially unfolded misligated heme forms inhibit the peroxidase activity. Data from the K99E mutation at pH 7.0 indicate that K99 is not involved in heme misligation, whereas histidine coordination is proven by the data from the H118Q variant. 相似文献
The copper‐catalysed hydrogenation of triglyceride oils differs from the nickel‐catalysed reaction in that copper catalysts only hydrogenate double bonds in methylene interrupted polyunsaturated fatty acid moieties. Accordingly, the copper‐catalysed reaction stops when the triglycerides present in the reaction mixture are only monounsaturated fatty acids and polyunsaturated fatty acids in which the double bonds are separated by more than one methylene group. Copper catalysts thus exhibit a very high oleic acid selectivity. This observation has been explained in the literature by assuming that copper catalysts can only catalyse the hydrogenation of conjugated polyenes and that they are also capable of catalysing the conjugation of methylene interrupted polyenes. Accordingly, the hydrogenation of linolenic acid and linoleic acid moieties starts with their conjugation which is then followed by hydrogen addition to these conjugated acids. For both reactions (conjugation and hydrogenation) the literature assumes the Horiuti‐Polanyi mechanism stipulating the addition of a hydrogen atom to a double bond as the first step. Reinterpretation of the literature data now leads to the hypothesis that the first step in the conjugation mechanism could well be the abstraction of a hydrogen atom from an allylic methylene group rather than the addition of a hydrogen atom to a doubly bonded carbon atom. A conjugated double bond system then results from the addition of a hydrogen atom to the allylic radical formed by the foregoing hydrogen abstraction. 相似文献
Abstract The mathematical models of the initial stage of the thermal dehydrochlorination of PVC are proposed. It is shown that abnormal unstable fragments having constants of rates of degradation equal to 10?3–10?4sec?1 have the greatest influence on the thermal degradation of PVC at 180–200°C. The groups having chlorine near tertiary carbon and chloroallylic groups may be such fragments. 相似文献
The leaching kinetics of potassium from phosphorus-potassium associated ore in hydrochloric acid/fluorite (CaF2) system was studied. HCl concentration, liquor/solid ratio, CaF2 dosage, and temperature were found to be the main factors. The leaching rate of potassium can be reached more than 92% under the optimum operation conditions. A classic shrinking core model with the mixed chemically diffusion as the rate-controlling step was successfully modeled the leaching kinetics of potassium, and the activation energy was found to be 30.7 kJ·mol?1. The leaching mechanism of potassium was also elucidated based on the experimental results. 相似文献
The kinetics of the reaction of acetic acid and acetylene over zinc acetate-activated carbon catalyst was investigated over a wide range of process variables in a pilot reactor. Although various catalytic reaction mechanisms were postulated, the rate of reaction was most satisfactorily correlated by a mechanism of surface reaction between charged adsorbed acetic acid and acetylene, which assumes that the rate controlling step was the irreversible charged adsorption of acetylene and acetic acid. 相似文献