首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors report the high-temperature and high-power operation of strained-layer InGaAs/GaAs quantum well lasers with lattice-matched InGaP cladding layers grown by gas-source molecular beam epitaxy. Self-aligned ridge waveguide lasers of 3-μm width were fabricated. These lasers have low threshold currents (7 mA for 250-μm-long cavity and 12 mA for 500-μm-long cavity), high external quantum efficiencies (0.9 mW/mA), and high peak powers (160 mW for 3-μm-wide lasers and 285 mW for 5-μm-wide laser) at room temperature under continuous wave (CW) conditions. The CW operating temperature of 185°C is the highest ever reported for InGaAs/GaAs/InGaP quantum well lasers, and is comparable to the best result (200°C) reported for InGaAs/GaAs/AlGaAs lasers  相似文献   

2.
High power strained-layer InGaAs-GaAs graded-index separate confinement heterostructure (GRIN-SCH) single-quantum-well (SQW) lasers at an emission wavelength of 0.98 μm have been fabricated. A light power as high as 270 mW and a maximum front power conversion efficiency of 51.5% have been obtained for the antireflective and highly-reflective coated laser with 9-μm-wide ridge and 600-μm-long cavity  相似文献   

3.
通过将二级光栅直接刻在脊形波导AlGaInAs/AlGaAs DFB激光器的无铝光波导层上,实现了波长约为820nm,单面功率为30mW的单纵模激光器.由于采用无铝光栅,保证了二次外延质量,从而得到较好的器件性能.激光器的阈值电流为57mA,斜率效率约为0.32mW/mA.  相似文献   

4.
High-power 980-nm AlGaAs/InGaAs strained quantum-well laser grown by OMVPE   总被引:1,自引:0,他引:1  
High-power lattice-strained AlGaAs/InGaAs graded index separate-confinement heterostructure (GRINSCH) quantum-well lasers emitting at a 980-nm wavelength have been grown by organometallic vapor phase epitaxy (OMVPE) and fabricated with a self-aligned ridge-waveguide structure. Using a 3- mu m-wide and 750- mu m-long AR-HR coated laser, 30 mV of optical power was coupled into optical fibers with 28.6% efficiency. A dominating single-lobe far-field radiation pattern was obtained from a wedge-shaped ridge-waveguide laser for output power as high as 240 mW with a maximum output power of 310 mW.<>  相似文献   

5.
Modulation bandwidths of 24 GHz (Ibias=25 mA) and 33 GHz (Ibias=65 mA) are demonstrated for 3×100 μm2 In0.35Ga0.65As/GaAs multiple quantum well ridge-waveguide lasers with undoped and p-doped active regions, respectively. These performance enhancements have been achieved both by lowering the growth temperature of the high-Al-mole-fraction cladding layers and by utilizing short-cavity devices, fabricated with dry-etched facets using chemically-assisted ion-beam etching. Both the undoped and p-doped lasers also demonstrate modulation current efficiency factors exceeding 5 GHz/mA1/2, the best reported results for any semiconductor laser  相似文献   

6.
AlInGaAs/AlGaAs strained quantum-well ridge waveguide diode lasers with an emission wavelength of 890 nm are presented. These devices exhibit both single spatial and longitudinal mode operation up to 30 mW of optical output power. A CW threshold current of 13 mA was obtained for a 5-μm-wide ridge waveguide having a cavity length of 500 μm. The differential quantum efficiency was 52%. The lateral and perpendicular far-field radiation patterns (FWHM) from the laser were 6° and 51°, respectively. Reliability testing on uncoated gain-guided lasers made from the same wafer showed no sudden death failures and degradation rates as low as 4.6%/kh  相似文献   

7.
Uniform linear arrays of strained-layer multiple-quantum-well InGaAs-AlGaAs ridge-waveguide diode lasers have been fabricated that operate near 980 nm and have low threshold currents Ith and high differential quantum efficiencies ηd. Uniformity was achieved by a combination of uniform ion-beam-assisted etching with an electron cyclotron resonance ion source and uniform organometallic vapor-phase epitaxial (OMVPE) growth. We investigated the effects of device geometry, namely, ridge width, cavity length, and remaining cladding thickness outside the ridge t, on Ith and ηd. For uncoated lasers with 500-μm-long cavities, 2- to 3-μm-wide ridges, and t=165±75 nm fabricated in double-quantum-well OMVPE material, Ith was typically in the range 6-7 mA and ηd was >40% per facet. A 24-element array of 2-μm-wide, 200-μm-long ridge-waveguide lasers with a high reflection coating on the back facet exhibited excellent uniformity, with threshold currents and single-ended differential quantum efficiencies that averaged 3.4 mA and 72%, respectively. Similar arrays with high-reflectivity coatings on both facets exhibited threshold currents as low as 2 mA  相似文献   

8.
MOVPE-grown InGaAs/GaAs strained-layered lasers emitting at 0.98 μm have been fabricated using InGaAsP as an alternative to AlGaAs in the cladding layers. Semi-insulating blocked planar buried heterostructure lasers 2.5 μm wide have thresholds as low as 8 mA for 350 μm long devices. With the addition of reflective coatings, slope efficiencies of 0.67 mW/mA and output powers of 60 mW at 160 mA have been obtained  相似文献   

9.
The boom in fiber-optic communications has caused a high demand for GaAs-based lasers in the 1.3-1.6-μm range. This has led to the introduction of small amounts of nitrogen into InGaAs to reduce the bandgap sufficiently, resulting in a new material that is lattice matched to GaAs. More recently, the addition of Sb has allowed further reduction of the bandgap, leading to the first demonstration of 1.5-μm GaAs-based lasers by the authors. Additional work has focused on the use of GaAs, GaNAs, and now GaNAsSb barriers as cladding for GaInNAsSb quantum wells. We present the results of photoluminescence, as well as in-plane lasers studies, made with these combinations of materials. With GaNAs or GaNAsSb barriers, the blue shift due to post-growth annealing is suppressed, and longer wavelength laser emission is achieved. Long wavelength luminescence out to 1.6 μm from GaInNAsSb quantum wells, with GaNAsSb barriers, was observed. In-plane lasers from these samples yielded lasers operating out to 1.49 μm, a minimum threshold current density of 500 A/cm2 per quantum well, a maximum differential quantum efficiency of 75%, and pulsed power up to 350 mW at room temperature  相似文献   

10.
The effect of cladding layer thickness on large optical cavity650-nm lasers   总被引:1,自引:0,他引:1  
The reduction in penetration of the optical mode into the cladding layers in large optical cavity (LOC) laser structures offers the possibility of reducing the cladding-layer thickness. This could be particularly beneficial in GaInP-AlGaInP high-power devices by reducing the thermal impedance and the electrical series resistance. We have designed and characterized 650-nm LOC lasers by modeling the optical loss due to incomplete confinement of the optical mode by the cladding layers and calculating the thermally activated leakage current. This indicated that the cladding thickness could be reduced to 0.5 μm without adversely affecting performance. We investigated devices with 0.3-, 0.5-, and 1-μm-wide cladding layers. The measured optical mode loss of the 0.3-μm-wide cladding device was 36.2 cm-1 compared with 12.4 and 11.3 cm-1 for the 0.5- and 1-μm-wide cladding samples, respectively. The threshold current densities of the 0.5- and 1.0-μm devices were similar over the temperature range investigated (120-320 K), whereas the 0.3-μm devices had significantly higher threshold current density. We show that this can be attributed to the higher optical loss and increased leakage current through the thin cladding layer. The intrinsic gain characteristics were the same in all the devices, irrespective of the cladding-layer thickness. The measured thermal impedance of 2-mm-long devices was reduced from 30.7 to 22.3 K/W by reducing the cladding thickness from 1 to 0.5 μm. Our results show that this can be achieved without detriment to the threshold characteristics  相似文献   

11.
Narrow-linewidth ridge-waveguide distributed Bragg reflector (DBR) lasers with asymmetric cladding are demonstrated. This design requires only a single epitaxial growth of an asymmetric cladding laser structure while the grating and the ridge waveguide are fabricated after the growth. These lasers have a threshold current as low as 9 mA, a slope efficiency of 0.3 W/A, and a T0 of 100 K. Wavelength tuning of 8 nm is achieved by current injection heating of the DBR section. A spectral-linewidth minimum of 36 kHz is achieved at an output power of 20 mW and is limited by linewidth rebroadening due to current injection in both the gain section and DBR section  相似文献   

12.
Zhang  G. 《Electronics letters》1994,30(15):1230-1232
High power and high quantum efficiency Al-free InGaAs/GaInAsP/GaInP GRINSCH SQW lasers emitting at 0.98 μm are reported. A CW output power as high as 580 mW and single lateral mode power up to 280 mW were achieved for the Al-free ridge waveguide lasers at room temperature. The lasers exhibited a high internal quantum efficiency of 99% and low internal waveguide loss of 3.2 cm-1. A high characteristic temperature of 217 K and low threshold current density of 109 A/cm2 were also obtained. The results are the best obtained for Al-free 0.98 μm pumping lasers  相似文献   

13.
We demonstrate high-performance Al-free InGaAsN-GaAs-InGaP-based long-wavelength quantum-well (QW) lasers grown on GaAs substrates by gas-source molecular beam epitaxy using a RF plasma nitrogen source. Continuous wave (CW) operation of InGaAsN-GaAs QW lasers is demonstrated at λ=1.3 μm at a threshold current density of only JTH =1.32 kA/cm2. These narrow ridge (W=8.5 μm) lasers also exhibit an internal loss of only 3.1 cm-1 and an internal efficiency of 60%. Also, a characteristic temperature of T0=150 K from 10°C to 60°C was measured, representing a significant improvement over conventional λ=1.3 μm InGaAsP-InP lasers. Under pulsed operation, a record high maximum operating temperature of 125°C and output powers greater than 300 mW (pulsed) and 120 mW (CW) were also achieved  相似文献   

14.
Buried heterostructure (BH) PbSnTe-PbEuSeTe lasers with a PbSnTe active layer were fabricated for the first time using a two-stage molecular beam epitaxy (MBE) growth procedure. Lasers with 4-μm-wide and 0.65-μm-thick buried Pb0.961SnSn0.039Te active layer and Pb0.985Eu0.015Se0.02Te 0.98 cladding layers were grown. Continuous wave (CW) operating temperature of 175 K was measured with CW threshold currents of 1.6 mA (20 K), 13.6 mA (80 K), and 195 mA (160 K). Single-mode operation with 3.0-cm-1-mode tuning was measured at 1639.8 cm -1 emission  相似文献   

15.
1.3 μm Ga0.49In0.51As0.7P0.3-1.15% tensile strained single quantum well (SQW) lasers are successfully fabricated. The lowest threshold current for a 200 μm-long, 20 μm-wide ridge waveguide laser with high reflectivity coating is as low as 6 mA, corresponding to a very low threshold current density of 150 A/cm2  相似文献   

16.
In this letter, we report on a recent development of diluted nitride laser diodes operating at the wavelengths around 1.3 μm. The lasers grown by molecular beam epitaxy and processed into 20-μm-wide ridge waveguide structures, mounted episides up on subcarriers, exhibit a threshold current density as low as 563 A/cm2, slope efficiency of 0.2 W/A per facet, light power up to 40-mW continuous-wave, and characteristic temperature of 97-133 K  相似文献   

17.
通过将二级光栅直接刻在脊形波导AlGaInAs/AlGaAs DFB激光器的无铝光波导层上,实现了波长约为820nm,单面功率为30mW的单纵模激光器.由于采用无铝光栅,保证了二次外延质量,从而得到较好的器件性能.激光器的阈值电流为57mA,斜率效率约为0.32mW/mA.  相似文献   

18.
Fabrication and lasing characteristics of Nd-doped P2O 5-SiO2 core planar waveguide lasers are described. CW oscillation at a wavelength of 1052.5 nm was successfully demonstrated in 0.2 wt%-Nd-doped silica-based planar waveguides fabricated on a silicon substrate by flame hydrolysis deposition and reactive ion etching. The lasing threshold and slope efficiency were optimized in an 8-μm-wide waveguide, in which a lasing threshold pump power of 26 mW and a slope efficiency of 2.0% were obtained for 805-nm pumping. The measured lasing characteristics agreed with theoretical characteristics calculated by employing finite-element waveguide analysis, indicating that the waveguide structure was well controlled by the developed waveguide fabrication technique. The possible lasing characteristics of the waveguide lasers are discussed based on this agreement. The attenuation and emission properties of the waveguides are also described  相似文献   

19.
This letter reports studies on highly strained and strain-compensated InGaAs quantum-well (QW) active diode lasers on GaAs substrates, fabricated by low-temperature (550°C) metal-organic chemical vapor deposition (MOCVD) growth. Strain compensation of the (compressively strained) InGaAs QW is investigated by using either InGaP (tensile-strained) cladding layer or GaAsP (tensile-strained) barrier layers. High-performance λ=1.165 μm laser emission is achieved from InGaAs-GaAsP strain-compensated QW laser structures, with threshold current densities of 65 A/cm2 for 1500-μm-cavity devices and transparency current densities of 50 A/cm2. The use of GaAsP-barrier layers are also shown to significantly improve the internal quantum efficiency of the highly strained InGaAs-active laser structure. As a result, external differential quantum efficiencies of 56% are achieved for 500-μm-cavity length diode lasers  相似文献   

20.
The fabrication of GaInAlAs strained-layer (SL) multiple-quantum-well (MQW) ridge-waveguide (RW) laser diodes emitting at 1.57 μm is discussed. Due to an optimized layer structure, a very high characteristic temperature of 90 K was obtained. As a consequence for episide-up mounted devices, the maximum continuous wave (CW)-operation temperature is 130°C. At room temperature, a maximum output power of 47 mW was measured for 600-μm-long lasers with one high-reflection coated facet. The low series resistance of 4 Ω (2 Ω) for 200-μm-(400-μm)-long devices yields an ultrahigh 3-dB bandwidth of 17 GHz. These static and dynamic properties also result from a high internal quantum-efficiency of 0.83 and a high differential gain of 5.5×10-15 cm2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号