首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This article presents a defect modeling in eddy current non-destructive testing systems by using a new developed method called coupled electric field. It permits to improve qualitatively several models developed so far by many authors using coupled circuit methods that consider the defect only as loss of material. However, a defect can occur with a finite conductivity such as impurity, small burns and micro-solder. For this reason, this investigation consists of extending the coupled circuit method to the modeling of this kind of defects. The proposed approach consists of firstly considering the defect as an electric conductive volume and secondly changing the state variable presenting the electric current by the electric field one. This procedure permits expressing explicitly the impedance variation caused by the presence of an axi-symmetrical defect according to its characteristics. The comparison between the impedance variations calculated using finite elements method and the proposed one demonstrates a very good concordance. After this validation, the study covers also the influence of the defect shape and position on encircling probe impedance. This method is interesting since it permits a fully characterization of this kind of defects and facilitates the inversion process. Moreover, using a 3D finite element observation, this fast tool of simulation can be adapted for a fast phenomenological modeling of asymmetrical configurations.  相似文献   

2.
Eddy current testing (ECT), a non-destructive testing method widely used to evaluate defects within conductive materials, is explored in this study as it applies to insulators and non-uniformly conductive materials. Previous work has shown that at high frequencies, differences in electric permittivity can be detected with ECT. In this study, a new design of an ECT sensor that employs two resonance-tuned coils is evaluated. Results show that material inconsistencies in insulators are detectable due to spatial variations in permittivity and magnetic permeability, and that detection is possible at lower frequencies than previously demonstrated. In addition to determining signal dependence on individual electromagnetic parameters, sensitivity for defect detection in a carbon fiber-reinforced polymer (CFRP) composite is qualitatively determined. Although low signal-to-noise ratio is observed with a small-diameter coil, by increasing the coil diameter, the signal to noise ratio is increased while preserving adequate spatial resolution to detect defects in the sample. This study expands on previous studies of the application of ECT to insulators, and demonstrates that defect detection is possible in CFRPs.  相似文献   

3.
ABSTRACT

It has been widely accepted that the magnetic flux leakage (MFL) testing system can be applied only to the inspection of ferromagnetic materials. The possibility of using the MFL testing apparatus to inspect nonferromagnetic metals is discussed in this article. According to Faraday’s law of induction, eddy current rises in the conductor passing through the MFL magnetizer. The perturbation of eddy current and its corresponding magnetic field caused by defects are theoretically analyzed. Then, the finite element method is carried out to verify the theoretical analyses and extract the perturbed magnetic field signals. Furthermore, the influences of specimen conductivity and moving velocity on the detection signal amplitude are also simulated. The results show that the nonferromagnetic conductors are possible to be inspected by the MFL apparatus, and higher conductivity or inspection speed will facilitate the inspection.  相似文献   

4.
This paper introduces an innovative Nondestructive testing (NDT) approach by using dynamic magneto-optical imaging (MOI) system to diagnose weld defects. MOI mechanism was explained by Faraday magneto-optical effect and magnetic domain theory. Two Q235 specimen MOI experiments based on excitation of permanent magnet and alternating electromagnet (alternating current driven electromagnet) were performed, thus the feasibility of MOI system for weld defects detection was verified and the relation between alternating magnetic field (AMF) and dynamic MO images was discussed as well. In this research, AMF of welded high-strength steel (HSS) weldment was excited by an alternating electromagnet, and dynamic MO images of HSS seam were acquired for weldment NDT. Finally, a pattern recognition method including three steps was proposed. Dynamic MO images were fused periodically and the features of fused images were extracted by principal component analysis. A classifier based on error back propagation (BP) neural network was established to identify these weld features. It proved that typical weld features such as incomplete penetration, sag, crack and no defect can be classified by the proposed method with an accuracy of 93.5%.  相似文献   

5.
With the growing interest to use composite materials and honeycomb sandwich panels in industrial fields, much attention is devoted to the development of non-destructive testing (NDT) techniques for the detection and evaluation of defects. In this work, scanning pulsed eddy current (PEC) was investigated and two features, representing the magnetic field intensity and conductivity, were used to characterise the different types of defects in carbon fibre reinforced plastics (CFRP) laminates and honeycomb sandwich panels. The experimental results show that the low energy impact from 4 J to 12 J, conductive and non-conductive insert defects can be effectively detected and evaluated using the proposed methods. The effectiveness was verified and the advantages of scanning PEC were addressed through comparative studies with flash thermography and shearography.  相似文献   

6.
Nondestructive testing techniques for the diagnosis of defects in solid materials can follow three steps, i.e., detection, location, and characterization. The solutions currently on the market allow for good detection and location of defects, but their characterization in terms of the exact determination of defect shape and dimensions is still an open question. This paper proposes a method for the reliable estimation of crack shape and dimensions in conductive materials using a suitable nondestructive instrument based on the eddy current principle and machine learning system postprocessing. After the design and tuning stages, a performance comparison between the two machine learning systems [artificial neural network (ANN) and support vector machine (SVM)] was carried out. An experimental validation carried out on a number of specimens with different known cracks confirmed the suitability of the proposed approach for defect characterization.   相似文献   

7.
This article reports effects of alignment of embedded carbon nanotubes in a polycarbonate polymer matrix under magnetic, direct and alternating current electric fields on the electrical properties of the resulting nanocomposites. Composites consisting of different quantities of carbon nanotubes in a polycarbonate matrix have been prepared using a solution casting technique. The effects of field strength and nanotube concentration on the resulted network structure and conductivity of the composites were studied by in situ optical microscopy, transmission electron microscopy and four-point probe technique. The results showed that the composites prepared in the presence of field had better conductivity than those of as-prepared composites. It was also concluded that the application of alternating current electric field and magnetic field in this system led to the formation of relatively continuing networks while direct current electric field only prevented agglomeration of the carbon nanotubes in the polycarbonate matrix and created relatively uniform distribution of nanotubes in the matrix.  相似文献   

8.
This paper describes a novel transient eddy current non destructive evaluation (NDE) system for the detection of defects in a multilayered conducting material by using fluxgate magnetometer as a sensor. In conventional eddy current NDE, the depth of defect detection is restricted due to the excitation frequency and its associated skin depth. Similarly, in conventional pulsed eddy current testing the time derivative of the secondary magnetic field, which decays much faster than the magnetic field itself, is measured by the induction coil. However, in this work we use fluxgate magnetometer which measures magnetic field directly and double “D” differential excitation coil in order to enhance the depth of investigation. In addition to this, the other instruments such as transmitter, transmitter controller and data acquisition system used for this work are the same one used for TEM based geophysical applications. The system has been used for the detection of an artificially engineered defect in an aluminum plate at a depth of 2 mm as well as 20 mm below the surface.  相似文献   

9.
For various loading rates we estimated the activated defect localization in Modified Brazilian Disk type glass specimens in comparison with standard spherical glass specimens. Specimen geometry can considerably affect the mechanical response of material, especially brittle ones, which are very sensitive to the distribution of defects. High and low loading rates of Modified Brazilian Disk lead glass specimens have been investigated using universal Instron test machine and compressive Hopkinson pressure bars. The experimental results obtained have been compared using the Weibull distribution for scatter strength variation. Stress distribution in the above specimens was calculated using the finite element method, which provided detailed analysis of the macromechanical brittle fracture mechanism. In static tests of spherical glass specimens, we observed generation of contact stresses, which result in activation of defects in the working parts of specimens, whereas no activated defects were observed in Modified Brazilian Disk specimens neither under static, nor under dynamic loading conditions. For specimens of various geometries and type of load application it is recommended to apply probabilistic approaches, e.g., the Weibull approach, insofar as contact stresses in brittle materials induce activation of defects, location of which depends on the specimen geometry and loading type. __________ Translated from Problemy Prochnosti, No. 1, pp. 100–115, January–February, 2006.  相似文献   

10.
A key issue, which influences the applications of magnetic flux leakage testing, is defect quantification. There have been many research on the relationship between width, depth and magnetic flux leakage of slot defect. However, the length factor is often ignored. The relationship between characteristics of defect leakage field and defect length was investigated. The magnetic flux leakages of a series of plate specimens with the same width, same depth and different length slot defects were tested under the same magnetizing conditions. Testing results show that defect length is an important parameter needed to consider in quantifying defects.  相似文献   

11.
Effect of the simultaneous application of a high static magnetic field and a low alternating electric current on the solidification structure of pure aluminum has been investigated. Results show that the refinement of the solidification structure is enhanced by the electric current under a certain magnetic field. However, when the magnetic field intensity exceeds a certain value, the refinement is impaired under a certain electric current. The observation by electron backscattered diffraction (EBSD) shows the complex fields have led to the increase of the low angle boundaries with the refinement. Moreover, the application of the static gradient magnetic field is capable of modifying the distribution of the refined grains. The above results may be attributed to the formation of the cavities during the electromagnetic vibration process and the high magnetic field.  相似文献   

12.
Considerable efforts have been made to develop testing non-destructive methods for polymer composite materials. We would like to introduce researchers in the field of smart materials to a new method of monitoring internal stresses. The method can be classified as an embedded sensing technique, where the sensing element is a glass-coated ferromagnetic microwire with a specific magnetic anisotropy. With a diameter 10–100 μm, the microwire impedance acts as the controlled parameter which is monitored for a weak alternating current (AC) in the MHz range. The microwire impedance becomes stress sensitive in the presence of a weak constant axial bias magnetic field. This external parameter allows the impedance stress sensitivity to be easily tuned. In addition, a local bias field may also allow the reconstruction of stress profile when it is scanned along the microwire. The experimental results are analysed using simple magnetostatic and impedance models.  相似文献   

13.
The application of magnetic sensors in the traditional magnetic flux leakage (MFL) technique has a significant influence on the detection results. The sensor is typically used to directly measure the amplitude of the magnetic leakage flux intensity as the detection signal. In view of noise effects on the detection result and the subsequent misinterpretation of defect signals, a new non-destructive testing method is proposed. The proposed method intends to measure the magnetic flux change rate using two sensors. A mathematical model is first established to present the principle of the change rate measurement. Based on the magnetic dipole theory, it is inferred that the new method is applicable and sensitive to the detection and location of defects. Moreover, this method is advantageous as it inhibits the interference of MFL noises such as the distension noise, background noise, and vibration noise. The model predictions are then verified by a series of simulations. Finally, an experimental platform is set up to practically detect the defect of a steel plate, and the results agree with the demonstrations and simulations.  相似文献   

14.
裂纹缺陷的定量评估是无损检测的一项重要研究内容,本文采用交变磁场测量技术对平板裂纹缺陷进行了检测.在分析交变磁场测量技术原理的基础上,首先在大型电磁仿真软件AN SY S中建立了交变磁场测量模型,包括三组不同参数的裂纹缺陷和检测线圈相互垂直的两种传感器模型,然后用这两种传感器分别对不同缺陷进行了检测,研究了裂纹长度、深度和宽度变化对水平方向和垂直方向检测电压的影响规律,提取出了对长度和深度进行定量的特征量.最后,采用实验的方法对仿真结果进行了验证,实验结果的规律与仿真结论相一致,证明了仿真结果的正确性.从而为裂纹缺陷在实际中的检测和定量提供了借鉴.  相似文献   

15.
The manufacture of composite structures is inevitably linked to the formation of voids. Several non-destructive techniques are potentially able of detecting defects, but just the exact knowledge of the effects of defects on the mechanical properties allows the definition of thresholds for the purpose of quality management. In this paper an experimental program for characterizing the effect of voids on the composite materials behaviour is presented. Therefore glass fibre non-crimp fabric reinforced epoxy composites were produced using vacuum assistant resin transfer moulding. For obtaining various void contents specially modified process parameters were used. Nominally defect free specimens are compared with flawed specimens. Tensile testing at different loading speeds and fatigue tests in tension-compression loading are performed.  相似文献   

16.
A generalized model for finding magnetic field and signals from the objects of the railroad is proposed. A 3D model of the primary field of a defect-free rail excited by a pilot alternating current is developed. The mathematical models of the secondary field of the rail disturbed around a transverse wedge-shaped crack and a rectangular crack are developed. We compare the images of signals from a transverse wedge-shaped defect obtained in the course of modeling with actual defects, such as, e.g., transverse cracks.  相似文献   

17.
目的 研究铁磁材料焊接微缺陷的磁光成像规律.方法 运用漏磁检测原理和法拉第磁致旋光效应,建立微缺陷三维有限元模型,分析微缺陷磁光成像过程与磁场之间的关联,研究不同提离值、励磁电流、缺陷宽度、缺陷深度下的磁光成像,以及探索这些因素对磁光图像特征的影响.在此基础上,对最小宽度为0.05 mm的微缺陷进行磁光成像检测实验,并...  相似文献   

18.
《NDT International》1986,19(1):3-14
Non-destructive inspection of defects using the magnetic leakage flux method presents several experimental and theoritical difficulties. It is shown that the leakage field strength around a defect is linked linearly with the field strength inside it. Thus a prerequisite to a better understanding of the phenomenon is the determination of the magnetic field strength inside the defect as a function of defect geometry, magnetic properties of the material and applied field strength. Equations are presented which enable computation of this quantity. Discrepancies between measurement and calculations using the method of finite elements emphasize the need for accurate knowledge of the magnetic field strength inside the defect.  相似文献   

19.
针对碳纤维增强树脂基复合材料分层缺陷的无损检测与评估问题,通过制备预埋分层缺陷的标准试样,利用超声相控阵技术对缺陷进行无损检测与定量评估,并对测量误差进行分析。首先,在层压板铺层中间埋入聚酰亚胺薄膜制备分层缺陷试样;然后,对试样进行超声相控阵检测,通过超声S扫和C扫图像对缺陷进行定性分析与定量测量,并结合声场仿真对检测误差进行分析。结果表明:所制备试样内分层缺陷形状规则、埋深及大小与预设一致;超声相控阵步进方向检测尺寸比较准确,而扫查方向尺寸误差较大;超声相控阵技术能够准确识别分层缺陷的形状、尺寸及位置,具有很高的检测精度,对较小缺陷具有很好的检测效果。  相似文献   

20.
The Hall effect is widely exploited in NDE for measuring unknown weak magnetic fields using a small piece of conducting material of known high Hall coefficient. The Hall effect could be also exploited in NDE for measuring the unknown weak Hall coefficient of conducting materials using a strong applied magnetic field, but such measurements are fraught with difficulties because of the need to cut the specimen into a small piece similar to a Hall sensor, which of course is inherently destructive. This paper tries to answer the question how the need for destructive cutting in order to produce a measurable Hall voltage could be avoided. The underlying problem is that the Hall effect produces a Hall current that is normal to the conduction current but does not directly perturb the electric potential distribution unless the Hall current is intercepted by the boundaries of the specimen. This study investigated the feasibility of using alternating current potential drop techniques for nondestructive Hall coefficient measurement in plates. Specifically, the directional four-point square-electrode configuration is investigated with superimposed external magnetic field. Two methods are suggested to make Hall coefficient measurements in large plates without destructive machining. At low frequencies constraining the bias magnetic field can replace destructively constraining the dimensions of the specimen. At sufficiently high inspection frequencies the magnetic field of the Hall current induces a strong enough Hall electric field that produces measurable potential differences between points lying on the path followed by the Hall current even when it is not intercepted by either the edge of the specimen or the edge of the magnetic field. Both techniques are investigated first analytically to illuminate the underlying physics and then by numerical simulations to make useful quantitative predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号