首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fracture toughness of re-entrant foam materials with a negative Poisson's ratio is explored experimentally as a function of permanent volumetric compression ratio, a processing variable. J IC values of toughness of negative Poisson's ratio open cell copper foams are enhanced by 80 percent, 130 percent, and 160 percent for permanent volumetric compression ratio values of 2.0, 2.5, and 3.0, respectively, compared to the J IC value of the conventional foam (with a positive Poisson's ratio). Analytical study based on idealized polyhedral cell structures, approximating the shape of the conventional and re-entrant cells, disclose for re-entrant foam, toughness increasing as Poisson's ratio becomes more negative. The increase in toughness is accompanied by an increase in compliance, a combination not seen in conventional foam, and which may be useful in some applications such as sponges.  相似文献   

2.
Negative Poisson's ratio copper foam was prepared and characterized experimentally. The transformation into re-entrant foam was accomplished by applying sequential permanent compressions above the yield point to achieve a triaxial compression. The Poisson's ratio of the re-entrant foam depended on strain and attained a relative minimum at strains near zero. Poisson's ratio as small as -0.8 was achieved. The strain dependence of properties occurred over a narrower range of strain than in the polymer foams studied earlier. Annealing of the foam resulted in a slightly greater magnitude of negative Poisson's ratio and greater toughness at the expense of a decrease in the Young's modulus.  相似文献   

3.
Negative Poisson's ratio polyethylene foams   总被引:1,自引:0,他引:1  
Various polyethylene foams were subjected to thermo-mechanical processing with the aim of transforming them into re-entrant materials exhibiting negative Poisson's ratio. Following transformation, large cell foams (cell sizes of 1 and 2 mm) exhibited re-entrant cell structure and negative Poisson's ratio over a range of processing times and temperatures. Poisson's ratio vs. strain for these foams was similar to prior results for reticulated polyurethane foams. Following processing, microcellular polyethylene foam was densified but cells remained convex; it did not exhibit a substantial negative Poisson's ratio. This foam had a different transition temperature as determined via DSC than the large cell foams.  相似文献   

4.
Auxetic materials have a negative Poisson's ratio, that is, they expand laterally when stretched longitudinally. Negative Poisson's ratio is an unusual property that affects many of the mechanical properties of the material, such as indentation resistance, compression, shear stiffness, and certain aspects of the dynamic performance. The unusual mechanical properties of auxetic foams are attributed to the deformation characteristics of re-entrant microstructures. One way of obtaining negative Poisson's ratio is by using a re-entrant cell structure. Auxetic foam was fabricated from a conventional polymeric foam. The fabrication method for making both small and large auxetic foam specimens is described. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

5.
An experimental study by holographic interferometry is reported of the following material properties of conventional and negative Poisson's ratio copper foams: Young's moduli, Poisson's ratios, yield strengths and characteristic lengths associated with inhomogeneous deformation. The Young's modulus and yield strength of the conventional copper foam were comparable to those predicted by microstructural modelling on the basis of cellular rib bending. The re-entrant copper foam exhibited a negative Poisson's ratio, as indicated by the elliptical contour fringes on the specimen surface in the bending tests. Inhomogeneous, non-affine deformation was observed holographically in both foam materials.  相似文献   

6.
Auxetic materials have a negative Poisson’s ratio, that is, they expand laterally when stretched longitudinally. One way of obtaining a negative Poisson’s ratio is by using a re-entrant cell structure. Auxetic foam was fabricated from a conventional polymeric foam. Assuming similar mechanical properties for the solid material comprising the foams, the principle variable affecting the properties of the foam is the geometry of the cells. This means that the unusual mechanical properties of auxetic foams are attributed to the deformation characteristics of re-entrant microstructures. In this paper, the results of optical- and scanning electron-microscopic studies of the geometrical parameters for the different foams examined are presented. Examples of the microstructural deformation mechanisms observed are also presented. Comparison between the conventional foams and their auxetic conversions are also made. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

7.
Negative Poisson's ratio polymeric and metallic foams   总被引:3,自引:0,他引:3  
Foam materials based on metal and several polymers were transformed so that their cellular architecture became re-entrant, i.e. with inwardly protruding cell ribs. Foams with re-entrant structures exhibited negative Poisson's ratios as well as greater resilience than conventional foams. Foams with negative Poisson's ratios were prepared using different techniques and materials and their mechanical behaviour and structure evaluated.  相似文献   

8.
Review on auxetic materials   总被引:1,自引:0,他引:1  
Although a negative Poisson's ratio (that is, a lateral extension in response to stretching) is not forbidden by thermodynamics, for almost all common materials the Poisson's ratio is positive. In 1987, Lakes first discovered negative Poisson's ratio effect in polyurethane (PU) foam with re-entrant structures, which was named anti-rubber, auxetic, and dilatational by later researchers. In this paper, the term 'auxetic' will be used. Since then, investigation on the auxetic materials has held major interest, focusing on finding more materials with negative Poisson's ratio, and on examining the mechanisms, properties and applications. Therefore, more materials were found to have the counter-intuitive effect of auxeticity due to different structural or microstructrual mechanisms. The present article reviews the latest advances in auxetic materials, their structural mechanisms, performance and applications.  相似文献   

9.
Anisotropic polyurethane foam with Poisson'sratio greater than 1   总被引:1,自引:0,他引:1  
Anisotropic polymer foams have been prepared, which exhibit a Poisson's ratio exceeding 1, and ratios of longitudinal to transverse stiffness exceeding 50. The foams are as much as 20 times stiffer in the longitudinal direction than the foams from which they were derived. The transformation process involved applying to open-cell polyurethane foam an axial strain of 25 to 45%, at a temperature above the softening point, followed by cooling under axial strain. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.

In situ synchrotron X-ray microtomography was used to characterize the bulk deformation behavior by computing the Poisson’s ratio of expanded thermoplastic polyurethane (eTPU) molded bead foams used in footwear midsole during compression. Quantitative data on morphological characteristics were obtained using an iterative image processing workflow. Image correlation on the 4D datasets using DVC was performed to calculate the volumetric and axial strain to estimate the Poisson ratio. Strain maps from DVC showed the influence of variability in ligament thickness distribution on the global mechanical behavior exhibited which dominated the response seen in these bead foams. Finally, our results showed a strong correlation between Poisson ratio and distribution of ligament thickness in foams.

  相似文献   

11.
Three areas, where polymer foam products are used in personal protection, are reviewed to contrast the foam micromechanisms and the use of Finite Element Analysis (FEA) for engineering design. For flexible open-cell foams used for seating cushions, the main deformation mechanism is cell edge bending; regular cell models can predict much of the compressive response. Hyperelastic FEA models can then predict the forces for foam indentation. For flexible closed-cell foams used in shoe midsoles, cell air compression dominates the response; diffusive air loss leads to foam deterioration with use. Hyperelastic FEA models can predict the interaction between the foam and the heelpad. Finally, for rigid closed-cell foams used in helmets, the permanent stretching and wrinkling of cell faces dominates the response. Crushable foam FEA models, which consider the yield surface and hardening, predict different responses for impacts on the road and on a kerbstone.  相似文献   

12.
目的 制作和表征基于明胶的生物基可堆肥降解泡沫材料,并应用于包装领域。方法 明胶泡沫通过机械发泡和在周围环境中干燥制成。研究明胶含量、表面活性剂含量以及发泡温度对泡沫最大发泡倍率(MER)、收缩、密度、结构以及压缩性能的影响。此外,研究不同明胶含量样品的导热率。结果 研究的3个因素对泡沫性能和结构有显著影响。MER值和收缩是黏度相关,并极大地影响泡沫密度、力学性能以及热导率。增加明胶含量制造出了密度和压缩强度更高的泡沫(由于MER值更低)。表面活性剂质量分数从0.75%增加到1.5%由于发泡性提升造成泡沫密度轻微下降。然而,进一步将表面活性剂质量分数提升至3%造成黏度显著增加、MER值下降,从而导致泡沫密度增加。更高的发泡温度可以得到更高的MER,但是由于液态泡沫稳定时间更长,收缩程度更大,泡沫密度更大。结论 明胶泡沫展现出作为低密度传统塑料泡沫(密度小于30 kg/m3)环保替代品极具潜力的性能。研究成功实现了明胶泡沫的低热导率〔0.038~0.039 W/(m.K)〕和相对较低的收缩程度。  相似文献   

13.
闫畅  宋绪丁  荆传贺  封硕 《材料导报》2017,31(18):92-96, 101
泡沫铝是一种新型的结构和功能材料,因特殊的能量吸收特性而在工程领域具有很好的应用前景。为了研究基体材料对泡沫铝力学性能和变形失效机理的影响,同时为工业泡沫铝材料提供更具参考价值的性能指标,对工业上最常见的两种不同基体(纯铝基体和7050铝合金基体)的泡沫铝材料进行了准静态压缩力学性能的试验,并对其变形机理进行了分析。试验结果表明,相同规格的7050基体泡沫铝的压缩力学性能高于纯铝基体泡沫铝,能量吸收能力也远大于纯铝基体泡沫铝。纯铝基体泡沫铝在压缩载荷下呈现逐层坍塌、连续性破坏的模式,试件在完全压实后呈碎渣;7050基体泡沫铝表现出逐层坍塌、间断式破坏的模式,试件在完全压实后呈完整的块状。7050基体泡沫铝的泡孔结构比纯铝基体泡沫铝均匀,力学性能更加稳定。  相似文献   

14.
Manufacture of biodegradable packaging foams from agar by freeze-drying   总被引:2,自引:0,他引:2  
Cellular foams were made from the aqueous solution of agar by freeze-drying. A narrow range (5–20°C min-1) of freezing rate was required to avoid damage to the microstructure of the agar foams. The size of cells in the foam decreased with increasing freezing rate. Agar foams of more than 4 wt% agar content absorbed more energy than a polystyrene foam in compression tests. Foams with a higher agar content absorbed more energy. The behaviour of agar foams in compression tests could be explained by the modified beam theory for cellular foams. Agar foams were thermally stable up to 200°C, and were also stable in a humid environment. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
16.
In this study, polyethylene glycol (PEG) was added to phenol–urea–formaldehyde foam to improve its toughness, and the effects of PEG, with different molecular weights and dosages, on the mechanical property, microstructure, thermal stability, and flame resistance of phenol–urea–formaldehyde foam were studied. The addition of PEG significantly increased the toughness and impact strength and decreased the pulverization rate of the foam. The compression strength of the foam first increased and then decreased with increasing amounts of PEG. When 2 wt% PEGs were added, the compression strength of foams was the highest. The addition of PEG significantly influenced the microstructure of phenol–urea–formaldehyde foams, in which the cell diameter decreased and wall thickness increased with increasing amount and molecular weight of PEG. The addition of PEG also slightly decreased the thermal stability of phenol–urea–formaldehyde foams, and increased the heat release rate, total heat release, and total smoke release of the foams.  相似文献   

17.
The effect of artificial aging on the compression yield strength of an open-cell AA6101 foam is studied using both experimental and modeling approaches. Isothermal calorimetry is used to analyze the precipitation kinetics of the foam. The modeling work combines the established approaches for predicting the yield strength of open-cell metallic foams as a function of the relative density and normalized strength, as well as the age hardening behavior of AA6101 alloy. The foam yield strength is related to the evolution of precipitate content during aging and is modeled for artificial aging at 180 and 220 °C. It is shown that the model predictions match very well with the experimentally determined yield strength values. The overall results suggest that the presented analytical and modeling approaches can effectively be used to predict the precipitation hardening behavior and/or optimize processing and properties of AA6101 foams.  相似文献   

18.
The foaming behavior of SiC-particulate (SiCp) aluminum composite powder compacts containing titanium hydride blowing agent was investigated by heating to 750°C in a pre-heated furnace. Aluminum powder compacts were also prepared and foamed using similar compaction and foaming parameters in order to determine the effect of SiCp-addition on the foaming and compression behavior. The SiCp-addition (10 wt%) was found to increase the linear expansion of the Al powder compacts presumably by increasing the surface as well as the bulk viscosities. The compression tests conducted on Al and 10 and 20% SiCp foams further showed a more brittle compression behavior of SiCp/Al foams as compared with Al foams. The collapse stresses of Al and 10% SiCp/Al foams were also predicted using the equations developed for the open and closed cell foams. Predictions have shown that Al foam samples behaved similar to open cell foams, while 10% SiCp/Al foam collapse stress values were found between those of open and closed cell foams, biasing towards those of the open cell foams.  相似文献   

19.
The in-situ bulk polycondensation process in combination with a ball milling dispersion process was used to prepare the water blown multiwall carbon nanotubes (CNT)/polyurethane (PU) composite foam. The mechanical properties, piezoresistive properties, strain sensitivity, stress and resistance relaxation behaviors of the composite foams were investigated. The results show that the CNT/PU composite foam has a better compression strength than the unfilled polyurethane foams and a negative pressure coefficient behavior under uniaxial compression. The resistance response of CNT/PU nanocomposites foam under cyclic compressive loading was quite stable. The nanocomposite foam containing a weight fraction of carbon nanotubes close to the percolation threshold presents the largest strain sensitivity for the resistance. The characteristic of resistance relaxation of CNT/PU composite foam is different from the stress relaxation due to the different relaxation mechanism. During compressive stress relaxation, the CNT/PU foam composites have excellent resistance recoverability while poor stress recoverability.  相似文献   

20.
A process has been developed for obtaining closed cell metallic foams using a ceramic foam precursor. In the present study, the major constituent of the ceramic foam precursor was iron oxide (Fe2O3), which was mixed with various foaming/setting additives. The mixture set rapidly at room temperature, stabilizing the foam generated by hydrogen release. The oxide foam was then reduced by annealing at 1240C in a non-flammable hydrogen/inert gas mixture to obtain a metallic foam with a relative density of 0.23 ± 0.017, and an average cell diameter of 1.32 ± 0.32 mm. The iron foams were tested in compression and yielded an average compressive strength of 29 ± 7 MPa. The compressive stress-strain curves obtained were typical of cellular metals. The normalized strengths of the metal foams obtained in the present study compare favorably with those of steel foams produced by other techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号