首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors present the nonlinear LMS adaptive filtering algorithm based on the discrete nonlinear Wiener (1942) model for second-order Volterra system identification application. The main approach is to perform a complete orthogonalisation procedure on the truncated Volterra series. This allows the use of the LMS adaptive linear filtering algorithm for calculating all the coefficients with efficiency. This orthogonalisation method is based on the nonlinear discrete Wiener model. It contains three sections: a single-input multi-output linear with memory section, a multi-input, multi-output nonlinear no-memory section and a multi-input, single-output amplification and summary section. For a white Gaussian noise input signal, the autocorrelation matrix of the adaptive filter input vector can be diagonalised unlike when using the Volterra model. This dramatically reduces the eigenvalue spread and results in more rapid convergence. Also, the discrete nonlinear Wiener model adaptive system allows us to represent a complicated Volterra system with only few coefficient terms. In general, it can also identify the nonlinear system without over-parameterisation. A theoretical performance analysis of steady-state behaviour is presented. Computer simulations are also included to verify the theory  相似文献   

2.
非线性Volterra系统的总体全解耦自适应滤波   总被引:1,自引:0,他引:1       下载免费PDF全文
研究输入、输出观测数据均受噪声干扰时的非线性Volterra系统的全解耦自适应滤波问题.基于总体最小二乘技术和Volterra滤波器的伪线性组合结构,运用约束优化问题的分析方法研究Volterra滤波过程,从而建立了一种总体全解耦自适应滤波算法.并建立了分析该算法收敛性能的参数反馈调整模型,分析表明,该算法可使各阶Volterra核稳定地收敛到真值.仿真实验的结果表明,当输入、输出观测数据均受噪声干扰时,总体全解耦自适应滤波算法的鲁棒抗噪性能和滤波精度均优于全解耦LMS自适应滤波算法.  相似文献   

3.
The reference and error channels of active noise control (ANC) systems may be saturated in real-world applications if the noise level exceeds the dynamic range of the electronic devices. This nonlinear saturation degrades the performance of ANC systems that use linear adaptive filters with the filtered-X least-mean-square (FXLMS) algorithm. This paper derives a bilinear FXLMS algorithm for nonlinear adaptive filters to solve the problems of signal saturation and other nonlinear distortions that occur in ANC systems used for practical applications. The performance of this bilinear adaptive filter is evaluated in terms of convergence speed, residual noise in steady state, and the computational complexity for different filter lengths. Computer simulations verify that the nonlinear adaptive filter with the associated bilinear FXLMS algorithm is more effective in reducing saturation effects in ANC systems than a linear filter and a nonlinear Volterra filter with the FXLMS algorithm.  相似文献   

4.
In this paper, the optimal filtering problem for polynomial system states with polynomial multiplicative noise over linear observations with an arbitrary, not necessarily invertible, observation matrix is treated proceeding from the general expression for the stochastic Ito differential of the optimal estimate and the error variance. Thus, the Ito differentials for the optimal estimate and error variance corresponding to the stated filtering problem are first derived. A transformation of the observation equation is introduced to reduce the original problem to the previously solved one with an invertible observation matrix. The procedure for obtaining a closed system of the filtering equations for any polynomial state with polynomial multiplicative noise over linear observations is then established, which yields the explicit closed form of the filtering equations in the particular cases of linear and bilinear state equations. In an example, the performance of the designed optimal filter is verified against those of the optimal filter for a quadratic state with a state-independent noise and a conventional extended Kalman–Bucy filter. The authors thank the Mexican National Science and Technology Council (CONACyT) for financial support under Grants No. 55584 and 52953.  相似文献   

5.
This paper presents the joint state filtering and parameter estimation problem for linear stochastic time-delay systems with unknown parameters. The original problem is reduced to the mean-square filtering problem for incompletely measured bilinear time-delay system states over linear observations. The unknown parameters are considered standard Wiener processes and incorporated as additional states in the extended state vector. To deal with the new filtering problem, the paper designs the mean-square finite-dimensional filter for incompletely measured bilinear time-delay system states over linear observations. A closed system of the filtering equations is then derived for a bilinear time-delay state over linear observations. Finally, the paper solves the original joint estimation problem. The obtained solution is based on the designed mean-square filter for incompletely measured bilinear time-delay states over linear observations, taking into account that the filter for the extended state vector also serves as the identifier for the unknown parameters. In the example, performance of the designed state filter and parameter identifier is verified for a linear time-delay system with an unknown multiplicative parameter over linear observations.  相似文献   

6.
This paper presents a Volterra filtered-X least mean square (LMS) algorithm for feedforward active noise control. The research has demonstrated that linear active noise control (ANC) systems can be successfully applied to reduce the broadband noise and narrowband noise, specifically, such linear ANC systems are very efficient in reduction of low-frequency noise. However, in some situations, the noise that comes from a dynamic system may he a nonlinear and deterministic noise process rather than a stochastic, white, or tonal noise process, and the primary noise at the canceling point may exhibit nonlinear distortion. Furthermore, the secondary path estimate in the ANC system, which denotes the transfer function between the secondary source (secondary speaker) and the error microphone, may have nonminimum phase, and hence, the causality constraint is violated. If such situations exist, the linear ANC system will suffer performance degradation. An implementation of a Volterra filtered-X LMS (VFXLMS) algorithm based on a multichannel structure is described for feedforward active noise control. Numerical simulation results show that the developed algorithm achieves performance improvement over the standard filtered-X LMS algorithm for the following two situations: (1) the reference noise is a nonlinear noise process, and at the same time, the secondary path estimate is of nonminimum phase; (2) the primary path exhibits the nonlinear behavior. In addition, the developed VFXLMS algorithm can also be employed as an alternative in the case where the standard filtered-X LMS algorithm does not perform well  相似文献   

7.
Two fast least-squares lattice algorithms for adaptive nonlinear filters equipped with bilinear system models are presented. The lattice filter formulation transforms the nonlinear filtering problem into an equivalent multichannel linear filtering problem, thus using multichannel lattice filtering algorithms to solve the nonlinear filtering problem. The computational complexity of the algorithms is an order of magnitude smaller than that of previously available methods. The first of the two approaches is an equation error algorithm that uses the measured desired response signal directly to compute the adaptive filter outputs. This method is conceptually very simple, but results in biased system models in the presence of measurement noise. The second is an approximate least-squares output error solution; the past samples of the output of the adaptive system itself are used to produce the filter output at the current time. Results indicate that the output error algorithm is less sensitive to output measurement noise than the equation error method  相似文献   

8.
The use of continuous B-spline representations for signal processing applications such as interpolation, differentiation, filtering, noise reduction, and data compressions is considered. The B-spline coefficients are obtained through a linear transformation, which unlike other commonly used transforms is space invariant and can be implemented efficiently by linear filtering. The same property also applies for the indirect B-spline transform as well as for the evaluation of approximating representations using smoothing or least squares splines. The filters associated with these operations are fully characterized by explicitly evaluating their transfer functions for B-splines of any order. Applications to differentiation, filtering, smoothing, and least-squares approximation are examined. The extension of such operators for higher-dimensional signals such as digital images is considered  相似文献   

9.
介绍了在理稳定分布环境下一种新的非线性Voherra自适应噪声对消器。由于Ⅱ稳定分布噪声有显著的尖峰脉冲特性,Vohem级数的非线性项将其更加放大,严重影响了收敛性能。提出了Voherra自适应噪声对消器利用sigmoid函数对输入α噪声进行非线性预处理,抑制尖峰脉冲的影响,基于Lyapunov稳定性,定义新的Lyapunov函数.给出了二阶Voherra自适应滤波器算法。仿真实验表明,该算法在不同特征指数的稳定分布噪声环境中都表现出了良好的抗噪声性能。  相似文献   

10.
Some properties of Volterra filtering are established. Finite-order, finite-horizon Volterra filtering is investigated as well as its asymptotic properties. Next, the concepts of Volterra unpredictability and uninterpolability lead to generalizations of the notion of white noise to higher orders. These generalizations are introduced and relations are established between them  相似文献   

11.
This paper addresses a Volterra series representation of bilinear (or quadratic) time-frequency distributions that belong to Cohen's class, whereby the analogy of the bilinear class with a second-order double Volterra series is utilized. In addition, a different viewpoint for the bilinear kernel and a complementary interpretation concerning the quadratic time-frequency distributions are provided.  相似文献   

12.
A new structure for the loop filter of a PLL which consists of a conventional linear first order filter connected in a feedback arrangement with a static nonlinearity is analyzed. In the absence of noise, the steady state operating conditions (i.e., equilibrium points) are independent of the parameters of the nonlinearity, and asymptotic stability of the PLL for sufficiently small frequency detuning is established independent of the initial conditions of the VCO. Due to the nonlinearity, the resulting performance of the PLL during the acquisition node is greatly improved with little resulting loss in the narrowband filtering capability of the loop. Using Volterra methods, an explicit expression for the variance of the phase error for a cubic nonlinearity is developed which compares favorably with simulation studies.  相似文献   

13.
Random and pseudorandom inputs for Volterra filter identification   总被引:4,自引:0,他引:4  
This paper studies input signals for the identification of nonlinear discrete-time systems modeled via a truncated Volterra series representation. A Kronecker product representation of the truncated Volterra series is used to study the persistence of excitation (PE) conditions for this model. It is shown that i.i.d. sequences and deterministic pseudorandom multilevel sequences (PRMS's) are PE for a truncated Volterra series with nonlinearities of polynomial degree N if and only if the sequences take on N+1 or more distinct levels. It is well known that polynomial regression models, such as the Volterra series, suffer from severe ill-conditioning if the degree of the polynomial is large. The condition number of the data matrix corresponding to the truncated Volterra series, for both PRMS and i.i.d. inputs, is characterized in terms of the system memory length and order of nonlinearity. Hence, the trade-off between model complexity and ill-conditioning is described mathematically. A computationally efficient least squares identification algorithm based on PRMS or i.i.d. inputs is developed that avoids directly computing the inverse of the correlation-matrix. In many applications, short data records are used in which case it is demonstrated that Volterra filter identification is much more accurate using PRMS inputs rather than Gaussian white noise inputs  相似文献   

14.
In this paper, identification of sparse linear and nonlinear systems is considered via compressive sensing methods. Efficient algorithms are developed based on Kalman filtering and Expectation-Maximization. The proposed algorithms are applied to linear and nonlinear channels which are represented by sparse Volterra models and incorporate the effect of power amplifiers. Simulation studies confirm significant performance gains in comparison to conventional non-sparse methods.  相似文献   

15.
Volterra filters are a classical instrument for nonlinear channels and systems modeling, noise and echo cancellation, signal estimation and detection, and various other applications. As is well known, the computational weight of Volterra filters exponentially grows with the nonlinearity degree. This work presents a contribution to the efficient computation of Volterra filters with generic order nonlinearity found in many telecommunication applications. Our technique rests on the interpretation of the Mth-order one-dimensional Volterra filters in terms of M-dimensional linear convolution, and it adopts a multidimensional fast convolution scheme. This makes the method applicable to any M. Interestingly enough, fast convolution based on the standard multidimensional fast Fourier transform (MD FFT) in the case of Volterra filters is outperformed by direct computation. Our method is efficient due to the use of a special MD FFT which can exploit the symmetries of the signals entering the computation of Volterra filters and which makes it superior to direct computation. The points of interests of the results presented are both the generality and the fact that they show that the well-known nonlinearity/multidimensionality tradeoff of Volterra filters can have computational implications.  相似文献   

16.
A diagonal coordinate representation for Volterra filters is developed and exploited to derive efficient Volterra filter implementations for processing carrier based input signals. In the diagonal coordinate representation, the output is expressed as a sum of linear filters applied to modified input signals. Hence, linear filtering methods are employed to implement the nonlinear filter on a baseband version of the input. Downsampling is then used to reduce computational complexity. The same approach is employed to develop efficient implementations for processing continuous-time carrier-based signals, pulse amplitude-modulated signals, and frequency division multiplexed input signals  相似文献   

17.
以随机信号经过线性系统理论为基础,研究了加性高斯白噪声经过滤波器后的带宽特性、等效带宽特性以及两者的关系,推导了以低通滤波器为例的线性系统的带宽和等效带宽公式。分析结果表明,等效带宽是说明线性系统滤波能力的一个重要参数,简单的使用带宽参数代替噪声等效带宽参数将使线性系统输出噪声功率的计算值增加,从而导致系统输出信噪比偏低,影响系统抗噪或滤波性能的评价。  相似文献   

18.
为实现通用滤波多载波(UFMC)通信系统高效、可靠的通信性能,需在最大程度上补偿由记忆型高功率放大器(HPA)引起的非线性失真.为解决HPA造成的失真问题,本文提出了一种基于Volterra滤波器的非线性失真补偿(V-NLDC)技术.该技术利用了Volterra级数的稀疏特性和能够模拟任意精度非线性系统的性质以逐次逼近的方式对信号进行预失真.将预失真后的信号传送至HPA,然后采用噪声消除器做进一步噪声消除处理,以达到更小失真度的目的.同时,本研究采用收敛速度快、性能稳定的自适应最小二乘法(RLS),可根据环境变化自适应地计算Volterra滤波器和噪声消除器的系数.通过大量蒙特卡罗仿真实验证实了所提出的非线性失真补偿技术可以很好的补偿由记忆型HPA非线性失真所造成的影响,从而优化系统性能.  相似文献   

19.
Geometric-mean filters compose a family of filters indexed by a parameter k varying between 0 and 1. They have been used to provide frequency-based filtering that mitigates the noise suppression of the optimal-linear Wiener filter in the blurred-signal-plus-noise model. For k=0 and k=1, the geometric-mean filter gives the inverse filter and the Wiener filter for the model, respectively. The geometric-mean for k=1/2 has previously been derived as the optimal linear filter for the model under power-spectral-density (PSD) equalization. This constraint requires the PSD of the filtered signal to be equal to the PSD of the uncorrupted signal that it estimates. This paper defines the notion of PSD stabilization, in which the PSD of the restored signal is equal to a predetermined function times the PSD of the uncorrupted signal. A particular parameterized stabilization function yields the geometric-mean family as the optimal linear filter for the model under PSD stabilization. Relative to unconstrained optimization, geometric-means are suboptimal; however, we consider a parameterized model for which the noise is such that the geometric-mean filters provide optimal linear filtering. In the altered signal-plus-noise model for which the geometric-mean is optimal, the blur is the same as the original model in which the geometric-mean is defined, but the noise PSD is a function of the Fourier transform of the blur and the PSD of the original noise. Since the altered model depends on k, we consider a robustness question: what kind of suboptimality results from applying the geometric-mean for k1 to the model fur which the geometric-mean for k2 is optimal?  相似文献   

20.
This paper presents a novel robust adaptive filtering scheme based on the interactive use of statistical noise information and the ideas developed originally for efficient algorithmic solutions to the convex feasibility problems. The statistical noise information is quantitatively formulated as stochastic property closed convex sets by the simple design formulae developed in this paper. A simple set-theoretic inspection also leads to an important statistical reason for the sensitivity to noise of the affine projection algorithm (APA). The proposed adaptive algorithm is computationally efficient and robust to noise because it requires only an iterative parallel projection onto a series of closed half spaces that are highly expected to contain the unknown system to be identified and is free from the computational load of solving a system of linear equations. The numerical examples show that the proposed adaptive filtering scheme realizes dramatically fast and stable convergence for highly colored excited speech like input signals in severe noise situations  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号