首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
李庆美  朱纪夏 《冶金分析》2013,33(10):77-80
对仪器测定参数和分析谱线进行优选,多次试验酸溶硼的分解酸度、基体元素干扰、内标元素,确定了电感耦合等离子体原子发射光谱法测定低合金钢中酸溶硼的方法。研究结果表明应用249.677 nm作为硼的分析谱线,选择硫酸(1+6)溶解样品,加入铍、钪混合标准溶液作双内标,采用基体铁匹配来测定低合金钢中微量的酸溶硼。方法检出限为0.030 μg/mL,相对标准偏差(RSD)小于10%,样品加标回收率为99%~101%。  相似文献   

2.
电感耦合等离子体原子发射光谱法测定高炉渣中硼   总被引:1,自引:0,他引:1       下载免费PDF全文
采用电感耦合等离子体原子发射光谱法测定高炉渣中硼,优选了适宜的仪器测定参数和分析谱线,研究了基体效应、共存元素间干扰及校正。实验结果表明,采用H2SO4-H3PO4-H2O2混合酸体系分解试样,可使样品溶解完全。通过对基体及共存元素干扰测定的考察,选择出208.959 nm,249.678 nm两条谱线做为硼的分析线。其中,共存元素Fe谱线(249.653nm)对B线(249.678 nm)的干扰,Mo谱线(208.952 nm)对B线(208.959 nm)的干扰可分别采用离峰单背景扣除及干扰系数校正法  相似文献   

3.
成勇 《冶金分析》2015,35(3):56-60
采用高压密闭微波加热方式,以硝酸和盐酸混合酸(VHNO3:VHCL=1:2)消解样品,建立了微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定五氧化二钒中质量分数为0.003%~0.100%的硼和铋的分析方法。实验表明:钒基体对硼、铋不产生光谱重叠干扰,但是,高浓度钒的基体效应降低了硼、铋谱线的检测信号强度;钒基体的连续背景叠加导致了硼、铋谱线的背景基线信号强度增强;硼、铋的部分灵敏谱线受到铬、铁等共存杂质元素的谱线重叠干扰。方法采取钒基体匹配和同步背景校正相结合的措施消除了基体效应的影响,通过采用灵敏度高且未受共存组分影响的谱线作为分析谱线和选择合适的检测积分与背景校正区域,提高了痕量硼、铋的检测性能。硼和铋的测定下限分别为0.001 1%和0.002 3%(二者均为质量分数),背景等效浓度分别为0.000 4%和0.001 8%(二者均为质量分数)。样品分析结果的相对标准偏差(RSD,n=8)小于8.0%,加标回收率在93%~110%之间,实际样品测定结果与电感耦合等离子质谱法(ICP-MS)一致。  相似文献   

4.
彭文明  杨觎  郭隽 《天津冶金》2012,(5):40-42,58
研究了硅铁中硼元素的电感耦合等离子体原子发射光谱分析方法。该方法采用硝酸和氢氟酸在低温条件下分解试样,配合电感耦合等离子体原子发射光谱仪测定硅铁中硼元素含量。光谱仪的进样系统采用耐氢氟酸的进样系统。在配制标准曲线过程中,考虑基体匹配和酸度对分析结果的影响。在仪器分析条件优化方面,通过试验确定基体元素对分析元素的基体影响和谱线干扰效应,选用波长208.959nm谱线作为分析谱线。该分析方法的精密度(RSD)小于5%,快速、简便,分析结果准确,可满足硅铁中痕量硼的检验要求。  相似文献   

5.
镍基合金耐蚀性优良,但难以溶解。实验使用盐酸-硝酸-氢氟酸并采用微波消解法消解样品,选择Si 288.158 nm、Cr 267.716 nm、B 249.678 nm为分析谱线,选用基体匹配法消除基体效应的影响,采用自动匹配法校正谱线干扰,并稀释溶液从而扩大铬元素的测定范围,建立了微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定镍基合金中硅、铬、硼的方法。硅在0.1%~2.0%(质量分数,下同)、铬在0.1%~2.0%、硼在0.01%~0.1%范围内,各元素发射强度与其质量分数呈线性关系,校准曲线的线性相关系数均不小于0.999 4,各元素检出限不大于0.000 2%。按照实验方法测定镍基合金样品中硅、铬、硼,结果的相对标准偏差(RSD,n=6)为0.70%~1.8%。方法应用于镍基合金标准样品的测定,测定结果与认定值相符。  相似文献   

6.
X射线荧光光谱法测定阳极铜各成分   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了X射线荧光光谱法测定阳极铜时样品表面处理的方法,程序设计过程中基体、谱线干扰,分析低含量元素时谱线背景的扣除等问题;对基体铜的测定采用了标准归一法;测定了阳极铜标样中20种元素,测定结果与推荐值一致,RSD为0.1%~6.0%;实测了阳极铜熔炼过程中不同阶段的5个样品,结果满意。  相似文献   

7.
研究了ICP-AES法测定70钛铁线中硅、硼元素,该方法用盐酸-硝酸-氢氟酸分解试样,将溶液雾化导入ICP,同时进行硅、硼的测定.绘制工作曲线时采用标准加入法,消除基体干扰.光谱仪的进样系统采用耐氢氟酸的进样系统.在仪器分析条件优化方面,通过试验确定基体元素对分析元素的基体影响和谱线干扰效应.硅分析谱线选择251.61...  相似文献   

8.
ICP-AES法测定不锈钢中多种元素   总被引:1,自引:0,他引:1       下载免费PDF全文
用ICP AES法同时测定了不锈钢中的铬、镍、钛、硅、锰、磷、铜、钼 ,替代了以化学法分别单独测定上述各元素。通过对ICP控制条件的选择 ,确定了各元素的测定谱线 ,进行了共存元素干扰试验 ,采用干扰系数法校正基体干扰和待测元素间的干扰 ,以 10 %混合酸作为低标 ,以同牌号标准样品作为高标 ,对上述元素进行了准确度及精密度试验 ,并与化学方法 ,原子吸收光谱法进行了对照。方法简便、快速 ,结果令人满意。  相似文献   

9.
样品经硝酸和氢氟酸混合酸分解后,采用电感耦合等离子体原子发射光谱(ICP-AES)法测定工业硅中痕量硼杂质元素。试验发现,控制加热温度在140~180℃,可以有效抑制硼元素的挥发。对分析谱线的选择进行探讨,选定B208.959nm{161}作为B的分析谱线,而且,适当的扣除背景点,基体和其它共存元素在实验条件下均未对B208.959nm{161}线产生光谱干扰现象。在仪器最佳工作条件下,方法检出限为0.03μg/mL,回收率在90%~105%,相对标准偏差≤7.0%(n=11)。用本方法测定工业硅标准样品中硼,测定值与认定值相吻合。  相似文献   

10.
采用X射线荧光光谱分析钛合金时, 由于共存元素之间存在严重谱线干扰和基体效应, 使元素含量与谱线强度之间相关性差, 影响测定结果的准确度和精密度, 尤其是铬、钒、钛 3元素共存的钛合金是X射线荧光光谱检测遇到的难题。试验通过利用多套钛合金标准样品制作校准曲线, 选择适合谱线和测试条件, 校正谱线重叠干扰和基体效应的方法有效地解决钛合金中共存元素的干扰, 其中谱线重叠干扰通过测量计算钛元素Kβ线对钒元素Kα线的重叠系数, 钒元素Kβ线对铬元素Kα线的重叠系数来解决。方法已用于钛合金样品中钼、锡、锆、钒、铝、锰、铁、铬、钨、镍、铜、硅共12个主次元素含量的测定, 测定值与化学法测定值相符, 各元素测定结果的相对标准偏差(RSD, n=10)均小于1.0%。方法可供航空用α、β、α+β 3类钛合金中主次元素的检测。  相似文献   

11.
应用直流辉光放电发射光谱仪,实现生铁、铸铁、不锈钢、中低合金钢材料中硼含量的共线法测定。实验选择磨床进行试样制备,采用单因素轮换法优化激发参数。以铁元素为基体元素来消除不同材质的基体效应,并进行钼元素的光谱干扰校正。实验优化分析参数为放电电压1 200 V,放电电流50 mA,预溅射时间50 s,积分时间10 s,钼元素光谱干扰校正系数为-0.007 9。硼含量分析范围0.000 6%~0.080%,测量结果与认定值一致,相对标准偏差不大于3%。  相似文献   

12.
不锈钢样品经王水溶解后,用火焰原子吸收光谱法测定了样品中铅的含量,建立了测定复杂体系中痕量铅的简便方法。对仪器参数进行了优化;考察了样品中的干扰。结果表明,采用氘灯背景校正和标准加入法消除样品测试过程中的背景干扰和非光谱干扰后,方法线性范围为0.035~9 μg/mL,检出限为0.035 μg/mL。将本方法应用于不锈钢光谱分析标准物质GBW 01664中铅的测定,测得结果与认定值一致,相对标准偏差(n=7)为0.97%。将本方法用于实际样品分析,结果的相对标准偏差(n=7)为0.57%~0.62%,加标回收率为96%~102%。  相似文献   

13.
以盐酸、硝酸和高氯酸溶解样品,通过优选394.401 nm波长的光谱线作为分析线,采用高纯铁进行基体匹配和多元光谱拟合(MSF)技术校正光谱干扰,消除了基体铁以及钼、铌、镍、钒、铬等共存元素对测定的影响,用电感耦合等离子体原子发射光谱法(ICP-AES)测定了不锈钢样品中低含量的酸溶铝(Als)。方法的定量限为0.000 13%(Als的质量分数),样品测定结果的相对标准偏差小于1%。方法用于不锈钢标准样品中低含量酸溶铝的测定,测定值与认定值相符。  相似文献   

14.
在电感耦合等离子体原子发射光谱法(ICP-AES)测定钢中铌时,铌的常用谱线Nb 316.340 nm在多款电感耦合等离子体原子发射光谱仪中未找到,因而有必要选择其他可用分析谱线。实验选择Nb 269.706 nm作为分析谱线,选用多元谱线拟合(MSF)校正谱线干扰,建立了ICP-AES测定钢中铌的方法。结果表明,铁对Nb 269.706 nm有光谱干扰,导致利用含铌钢标准物质绘制的校准曲线的线性关系较差,严重影响了ICP-AES分析结果的准确性。采用多元谱线拟合校正铁对Nb 269.706 nm的谱线干扰后,校准曲线的线性相关系数为0.999 9,方法检出限为0.000 7%。按照实验方法测定含铌钢实际样品中铌,结果的相对标准偏差(RSD,n=6)为1.4%~11%,回收率为92%~101%;含铌钢标准物质中铌的测定结果与标准值吻合较好,证实了方法的准确性。  相似文献   

15.
与一般在试液中加入可疑干扰元素的离子标准溶液来考察干扰元素和干扰程度的方法不同,本文用含不同铌且基体及组分元素差异较大的化学标准物质配制标准溶液,并根据用其测定铌时各相关分析线的校正曲线成线性情况,考察测定铌的光谱干扰程度。实验结果表明:标准溶液中钒、钛和铬对测铌的不同分析线存在干扰,尤以钒、钛分别对Nb309.418 nm和Nb313.079 nm干扰为甚,严重影响测量结果的准确度。采用干扰系数法校正光谱干扰以后,各分析线的校正曲线线性相关性大大提高,从而提高了测量结果的准确度。校正了钛对Nb313.079 nm的光谱干扰后,测得的GH4169化学标钢中的铌量为5.21%±0.060%与标钢赋值5.22%相一致。同时通过对校正后铌的各分析校准曲线线性的分析研究,找到了Cr18Ni20Mo2Cu2Nb不锈钢中铌测定值偏低的原因。  相似文献   

16.
通过最佳微波消解条件、分析谱线和内标元素的选择,基体及共存元素间光谱干扰的研究,检测限的测定以及样品分析,建立了微波消解-电感耦合等离子体原子发射光谱法测定硼铁中硼的分析方法。测定时可选择182.641,208.959,249.773 nm 3条谱线作为硼的分析线。当选择前两条谱线时,铁的质量浓度在0.5~2 mg/mL范围对测定没有影响;但是当铁的质量浓度在2 mg/mL时,由于硼的分析线(249.773 nm)受铁谱线(249.782 nm)干扰,对测定产生影响,这种影响可通过基体匹配方法消除。与硼共  相似文献   

17.
为了满足钢的研发以及生产要求,建立了利用电感耦合等离子体原子发射光谱(ICP-AES)法测定高合金钢中钒的方法。考察了钒常用的谱线与高合金钢中常见合金元素谱线的重叠干扰情况,选择了V292.402 nm和V309.311 nm谱线作分析线,并通过基体匹配、空白扣除、干扰系数校正和不扣除背景等方式进行干扰校正。用本法对含钒质量分数为0.005 %~4 %的高合金钢标准物质进行测定,测定值与认定值吻合,测定结果的相对标准偏差小于5 %(n=7)。  相似文献   

18.
高镁中包干式料作为钢铁冶炼过程中必须的一种原材料,其元素含量对于元素追踪起着至关重要的作用。试验对称样量、溶解方法、分析谱线等条件进行讨论,建立了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定高镁中包干式料中硼元素的方法。称取0.4000g高镁中包干式料样品,采用先加氢氧化钾溶液进行碱溶,再加盐酸和硝酸消解的方法处理样品,选择B 182.577nm或B 249.678nm为分析线,在体系没有明显干扰的情况下,选择自动匹配法(FITTED)进行谱线校正扣除背景,采用基体匹配法配制标准溶液系列并绘制校准曲线,实现了电感耦合等离子体原子发射光谱法对高镁中包干式料中硼的测定。硼的质量分数为0.0005%~0.020%(B 182.577nm)或0.0006%~0.020%(B 249.678nm)范围内校准曲线呈线性,相关系数均大于0.9995;方法中硼的检出限为0.0001%。方法应用于高镁中包干式料样品中硼的测定,结果的相对标准偏差(RSD,n=6)小于5%;加标回收率为92%~108%。按照实验方法测定1个成分含量与高镁中包干式料相似的镁砂标样(镁质量分数为48.87%)中硼,结果与标准值相吻合。  相似文献   

19.
为了降低电感耦合等离子体原子发射光谱法(ICP-AES)测定钢铁中痕量硼的测定下限,满足钢铁中硼质量分数在0.000 1%以下的测定要求,提出了萃取分离与电感耦合等离子体原子发射光谱相结合的方法测定钢铁中痕量硼。采用盐酸-硝酸混酸、硫酸-磷酸混酸和氢氟酸在微波消解仪中溶解试样,然后在pH 0.4~0.8的酸度下,用1,2-二氯乙烷萃取硼与次甲基蓝形成的络合物,萃取完毕后将1,2-二氯乙烷有机相和无水乙醇混合后直接进样,以B 249.678 nm波长作为硼的分析线,在设定的仪器参数下进行测定,方法检出限为0.001 mg/L,换算为钢铁中硼的质量分数为0.000 005%,方法测定下限为0.000 05%。实验方法用于钢铁标准样品和合成样品中痕量硼的测定,测定值分别与认定值或理论值相符,相对标准偏差(n=10)在0.44%~7.3%之间,回收率为92%~100%。  相似文献   

20.
针对复杂的不锈钢炉渣成分解析问题,实验采用Li2B4O7-LiBO2(m∶m=67∶33)为混合熔剂,NH4NO3做氧化剂,LiBr溶液(500g/L)做脱模剂,制备玻璃熔片;应用X射线荧光光谱(XRF)分析软件UniQuant扩展基本参数法,建立并校正不锈钢炉渣的背景形状、杂质因子,以谱线灵敏度系数和光谱重叠系数校正光谱干扰和基体效应,对不锈钢渣中可能存在的20余种成分进行解析,实现了不锈钢渣系中CaO、MgO、SiO2、Al2O3、TiO2、MnO、Fe2O3、P2O5、SO3、F、Cr2O3、NiO、V2O5、BaO共14种成分的定量分析及其他成分的定性半定量分析。对不锈钢工艺炉渣进行制样方法精密度考察,各组分测定结果的相对标准偏差(RSD,n=11)为0.15%~11%;对标样JKS11进行精密度测试,各组分测定结果的相对标准偏差(RSD,n=11)为0.030%~12%;对不锈钢炉渣标样和不锈钢工艺炉渣试样进行分析,14种主要组分的测定值与认定值或湿法值比对一致性好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号