首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(15):21700-21708
A two-step method, combined with cold isostatic pressing, was used to prepare CeO2-doped ZrP2O7 ceramics, and their microstructure, mechanical properties, thermal conductivities, and dielectric properties were determined. It was found that CeO2 doping could increase the Zr–P and P–O bond lengths, which in turn decreased the thermal conductivity of the ZrP2O7 matrix. Doping with 12 wt% CeO2 simultaneously reduced the sintering temperature and improved the mechanical properties of the ZrP2O7 ceramics, while retaining its low thermal conductivity and good dielectric properties. The maximum cold modulus of rupture of a sample at 1250 °C was 75.91 MPa, which met most conditions for use at room temperature. A COMSOL model was used to predict the thermal conductivity, based on the microstructure, with a relatively high degree of accuracy. The thermal conductivity of the CeO2-doped samples was lower than 1.083 W/(m·K). The dielectric constant was in the range of 5.93–6.52 at 20–40 GHz, and the dielectric loss was less than 4 × 10?3. The ZrP2O7-doped ceramics have potential for application in millimetre wave technology, satellite communication, and vehicle radar fields, because they can meet the high thermal insulation requirements for these applications.  相似文献   

2.
This study demonstrated the synthesis of novel zirconium pyrophosphate (ZrP2O7) ceramic foams via a two-step method using a foam casting technique. The synthesised foams functioned as thermal insulators with a highly controllable performance. We investigated the effects of the addition of foaming and thickening agents as well as the solid content of the slurries on the slurry, mechanical properties, thermal conductivities, and microstructure of ZrP2O7 ceramic foams. The ZrP2O7 ceramic foams synthesised at 1473 K exhibited a porosity, compressive strength, and thermal conductivity of 75.2–89.1 %, 1.95–0.02 MPa, and 0.144–0.057 W/(m K) (298–573 K), respectively. The increase in the porosity to >60 % will facilitate applications based on the low thermal conductivities of the foams.  相似文献   

3.
Sintering performance at high temperatures is a serious issue for tetravalent metal pyrophosphate MP2O7 ceramics (M = Ti, Zr, Hf, Ge, Sn, etc.). Herein, we investigated the influence of high synthesis temperatures and amounts of ZrP2O7 precursors on the properties of ZrP2O7 ceramics. A ZrP2O7 powder was first synthesised via a solid-state reaction; this powder was used in the fabrication of the ZrP2O7 ceramic using a combination of two-step sintering and in situ bonding using MgO as the sintering aid. The phase composition and microstructure of the ZrP2O7 powder as well as the ZrP2O7 ceramic were studied by X-ray diffraction and scanning electron microscopy. The physical properties and room-temperature thermal conductivity of the ZrP2O7 ceramic were investigated. The ceramic exhibited high thermal stability at 1350 °C. This study indicates that the mechanical properties of the ZrP2O7 ceramic can be enhanced while maintaining their low thermal conductivity by sintering it at 1300 °C with the addition of an appropriate amount of the ZrP2O7 precursors to the ZrP2O7 powder.  相似文献   

4.
《Ceramics International》2019,45(15):18865-18870
Near-net-shape mullite ceramics with high porosity were prepared from ultra-low cost natural aluminosilicate mineral kaolin as raw material and polystyrene micro-sphere (PS) as pore-forming agent. Microstructure, flexural strength, thermal conductivity and dielectric properties of the ceramics were systematically researched. Results show that the porous mullite ceramics possess fibrous skeleton structure formed by a large quantity of interlocked mullite whiskers, which results in good mechanical properties and low-to-zero sintering shrinkage. Flexural strength of the porous mullite ceramics can be up to 41.01 ± 1.12 MPa, even if the porosity is as high as 62.44%. The dielectric constant and loss tangent of the porous mullite ceramics at room temperature are lower than 2.61 and 5.9 × 10−3, respectively. Besides, dielectric constant is very stable with the rising of temperature, and the dielectric loss can be consistently lower than 10−2 when the temperature is not higher than 800 °C. In addition, thermal conductivity at room temperature is as low as 0.163 W/m/K when the porosity of mullite ceramics is 80.05%. The infiltration of SiO2 aerogels (SiO2 AGs) can further decrease the thermal conductivity to 0.075 W/m/K, while has just little effects on the dielectric properties. Excellent mechanical, thermal and dielectric properties show that the porous mullite ceramics have potential applications in radome fields. The porous mullite ceramics prepared from kaolin not only have low cost, but also can achieve near-net-shape.  相似文献   

5.
The potentially useful role of lanthanum zirconate (La2Zr2O7, LZO) porous bulk ceramics has been rarely explored thus far, much less the optimisation of its pore structure. In this study, LZO porous ceramics were successfully fabricated using a tert-butyl alcohol (TBA)-based gelcasting method, and the pore structures were tailored by varying the initial solid loading of the slurry. The as-prepared ceramics exhibited an interconnected pore structure with high porosity (67.9 %–84.2 %), low thermal conductivity (0.083–0.207 W/(m·K)), and relatively high compressive strength (1.56–7.89 MPa). The LZO porous ceramics with porosity of 84.2 % showed thermal conductivity as low as 0.083 W/(m·K) at room temperature and 0.141 W/(m·K) at 1200 °C, which is much lower than the counterparts fabricated from particle-stabilized foams owing to its unique pore structure with a smaller size, exhibiting better thermal insulating performance.  相似文献   

6.
《Ceramics International》2020,46(10):16564-16571
Effect of porosity and temperature on thermal conductivity of the porous Alumina-20 wt% Zirconia (3 mol.% Y2O3) ceramic composites with and without niobia were investigated. The ceramic powders were synthesized by the sol-gel route using alkoxide precursors. The porosity in the composites was maintained in the range of 9.5–65 vol% using starch as a space holder material. After processing, samples were compacted uniaxially and sintered at 1873 K for 3 h. The thermal conductivity of porous ceramic composites with and without niobia dopant was measured at three different temperatures of 300, 473, and 673 K using laser-flash technique. The thermal conductivity of the samples was reduced with increasing temperature and porosity. At temperature of 300 K, the thermal conductivity value of 11 W/m.K was obtained for the undoped sample S0 with 17 vol% residual porosity, dropped to 2 W/mK for the sample S40 containing 65 vol% porosity, and for the same sample it was further reduced to the lowest value of 0.68 W/m.K at 673 K. The measured conductivity values were used to determine the grain boundary thermal resistance value (R) of the samples which exhibited an ascending trend with the porosity. The obtained thermal conductivity for the different porous composites was verified and formulated with the Maxwell-Eucken and Ticha models. The results showed that the experimentally measured conductivity values follow a descending order with the models while at the higher-porosity level (57–65 vol%), it fits well with the Ticha equation with only 9% and 4.6% deviation for undoped and doped samples, respectively. Results also revealed that the addition of niobia significantly reduced thermal conductivity at the lower porosity levels, but at higher porosity level the effect of porosity was more dominant.  相似文献   

7.
Si3N4 porous ceramics with improved mechanical strength were fabricated for the first time by a combined foam-gelcasting and microwave-nitridation method at 1273–1373?K. The Si3N4 porous samples prepared at 1373?K/20?min with the porosity of 68.9% had respectively flexural and compressive strength as high as 8.1 and 20.8?MPa, which values were comparable or even superior to those of Si3N4 porous ceramics prepared previously by the conventional heating technique at a much higher temperature of 1773–1973?K, indicating that present preparation strategy is feasible to prepare high quality Si3N4 porous ceramic at a much milder condition. Moreover, the thermal conductivity of as-prepared Si3N4 porous ceramics at 1073?K was as low as 1.697?W/(m?K), suggesting it could be a potentially good heat insulating material for aluminum electrolyte cells.  相似文献   

8.
Lightweight SiC-ZrB2 porous ceramics is of great potential as thermal insulation material used in aerospace, chemical and energy industries. In this work, a series of SiC bonded ZrB2 (SiCb-ZrB2) porous ceramics with porosity high up to 86.9% were prepared by a simple foam gel-casting method. The SiCb-ZrB2 porous ceramic prepared at 1573 K exhibited a low thermal conductivity of 0.280 W/(m?K) and a reasonable compressive strength of 0.52 MPa. It could maintain the original geometric shape and microstructure after a secondary heat treatment at 1473 K in inert atmosphere. When heating the samples with thickness of 30 mm for 12 min with an alcohol spray lamp (~1273 K), the temperatures of the cold sides of SiCb-ZrB2 ceramics were all lower than 432 K, demonstrating their exceptional insulation capabilities. The present work provides a simple route to produce robust and thermally-insulating non-oxide porous ceramics for use under high temperature.  相似文献   

9.
In this study, we investigated the electrical and thermal properties of SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 (RE = Sm, Gd, Lu) additives. The three SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 additives showed electrical conductivities on the order of ~103 (Ω·m)?1, which is one order of magnitude higher than that of the SiC ceramics sintered with 2 vol% Y2O3 only. The increase in electrical conductivity is attributed to the growth of heavily nitrogen‐doped SiC grains during sintering and the confinement of oxide additives in the junction area. The thermal conductivities of the SiC ceramics were in the 176–198 W·(m·K)?1 range at room temperature. The new additive systems, equimolar Y2O3–RE2O3, are beneficial for achieving both high electrical conductivity and high thermal conductivity in SiC ceramics.  相似文献   

10.
《Ceramics International》2016,42(16):18215-18222
Porous MgAl2O4 ceramics were prepared via a low cost foam-gelcasting route using MgAl2O4 powders as the main raw material, ammonium polyacrylate as a dispersant, a small amount of modified carboxymethyl cellulose as a gelling agent, and TH-IV polymer as a foaming agent. The effects of additive's content, solid loading and gelling temperature on slurry's rheological behavior were investigated, and microstructures and properties of as-prepared porous MgAl2O4 ceramics examined. Based on the results, the roles played by the foaming agent in the cases of porosity, pore structure, pore size, mechanical properties and thermal conductivity were clarified. Porosity and pore sizes of as-prepared porous MgAl2O4 ceramics increased with increasing the foaming agent from 0.05 to 0.6 vol%. Porous MgAl2O4 ceramics with porosity of 75.1% and average pore size of 266 µm exhibited a compressive strength as high as 12.5±0.8 MPa and thermal conductivity as low as 0.24 W/(m K) (at 473 K).  相似文献   

11.
《Ceramics International》2016,42(5):6046-6053
New porous Yb2SiO5 ceramics were prepared by a water-based freeze casting technique using synthesized Yb2SiO5 powders. The prepared porous Yb2SiO5 ceramics exhibit multiple pore structures, including lamellar channel pores and small pores, in its skeleton. The effects of the solid content and sintering temperature on the pore structure, porosity, dielectric and mechanical properties of the porous Yb2SiO5 ceramics were investigated. The sample with 20 vol% solids content prepared at 1550 °C exhibited an ultra-low linear shrinkage (i.e. 4.5%), a high porosity (i.e. 79.1%), a high compressive strength (i.e. 4.9 MPa), a low dielectric constant (i.e. 2.38) and low thermal conductivity (i.e. 0.168 W/(m K)). These results indicate that porous Yb2SiO5 ceramics are good candidates for ultra-high temperature broadband radome structures and thermal insulator materials.  相似文献   

12.
The introduction of multiple heterogeneous interfaces in a ceramic is an efficient way to increase its thermal resistance. Novel porous SiC–SiO2–Al2O3–TiO2 (SSAT) ceramics were fabricated to achieve multiple heterogeneous interfaces by sintering equal volumes of SiC, SiO2, Al2O3, and TiO2 compacted powders with polysiloxane as a bonding phase and carbon as a template at 600 °C in air. The porosity could be controlled between 66% and 74% by adjusting the amounts of polysiloxane and the carbon template. The lowest thermal conductivity (0.059 W/(m·K) at 74% porosity) obtained in this study is an order of magnitude lower than those (0.2–1.3 W/(m·K)) of porous monolithic SiC, SiO2, Al2O3, and TiO2 ceramics at an equivalent porosity. The typical specific compressive strength value of the porous SSAT ceramics at 74% porosity was 3.2 MPa cm3/g.  相似文献   

13.
In a previous study, we demonstrated that porous magnesium aluminate spinels, MgAl2O4, with two different pore size ranges (diameter = 0.05-1 μm and 1-5 μm) exhibited thermal conductivities of less than 0.3 W/(m K) in the high-temperature region of 1000°C-1500°C. In contrast, thermal insulating materials that are stable at even higher temperatures would offer further improved thermal efficiency and energy savings. Therefore, we investigated lanthanum hexaaluminate, LaAl11O18, with the expectation that its plate-like grain morphology would allow stable retention of its porosity at high temperatures. A process was developed for generating pores with the desired dimensions for use of the thermal insulating materials at high temperatures. The heat transfer behavior of these materials was evaluated via optical measurements. Herein, we report the structures and thermal properties of the obtained porous ceramics, including determination of the thermal emissivity measurements, to demonstrate their superior high-temperature thermal insulating properties.  相似文献   

14.
The effects of porosity on the electrical and thermal conductivities of porous SiC ceramics, containing Y2O3–AlN additives, were investigated. The porosity of the porous SiC ceramic could be controlled in the range of 28–64 % by adjusting the sacrificial template (polymer microbead) content (0–30 wt%) and sintering temperature (1800–2000 °C). Both electrical and thermal conductivities of the porous SiC ceramics decreased, from 7.7 to 1.7 Ω−1 cm−1 and from 37.9 to 5.8 W/(m·K), respectively, with the increase in porosity from 30 to 63 %. The porous SiC ceramic with a coarser microstructure exhibited higher electrical and thermal conductivities than those of the ceramic with a finer microstructure at the equivalent porosity because of the smaller number of grain boundaries per unit volume. The decoupling of the electrical conductivity from the thermal conductivity was possible to some extent by adjusting the sintering temperature, i.e., microstructure, of the porous SiC ceramic.  相似文献   

15.
High-temperature thermal insulation materials challenge extensive candidates with good mechanical, thermal and chemical reliability at high temperatures. Recently, porous γ-Y2Si2O7 was indicated a promising thermal insulator in harsh environment; however, its strength at 1300?°C reduced to 34% of that at room temperature. In this work, we significantly improved its high-temperature strength by doping Ho. Highly porous γ-(Y1-xHox)2Si2O7 solid solution was fabricated by in-situ foam-gelcasting method. Especially, porous γ-(Y2/3Ho1/3)2Si2O7 demonstrated the optimal high-temperature strength, for instance 65% retention at 1300?°C, as well as high compressive strength (13.9?MPa) and low thermal conductivity (0.186?W/(m?K)) at room temperature, at the porosity of 79.3%. Interestingly, porous solid solution sample displayed obviously lower thermal conductivity than the two end pure-phase porous materials. Porous γ-(Y1-xHox)2Si2O7 solid solution is clearly highlighted as a promising high-temperature thermal insulator with outstanding high-temperature strength retention and optimal low thermal conductivity.  相似文献   

16.
MgO-Y2O3:Eu composite ceramics with high quantum yield and excellent thermal performance were successfully synthesized by vacuum sintering. All samples exhibited uniform composite microstructures and pure binary phase. Eu3+ ions were completely incorporated into Y2O3 phase, and the optimal Eu concentration is 15 at%. Sintered at 1800 °C, the fluorescent properties of MgO- z vol% Y2O3: Eu (z = 30, 40, 50, 60, 70, 100) composites proved to be independent on component proportion, including the similar fluorescence lifetimes (953–983 μs), quantum yield (70%−80%), and activation energy (ΔE) of thermal quenching (0.163 eV). Significantly, thermal conductivity of composites with 30 vol%, 50 vol% and 70 vol% MgO attained 11.58, 17.45, and 29.65 W/(m∙K) at room temperature, which are nearly 2, 3, and 5 times as high as that of 15 at% Eu:Y2O3 ceramic (5.90 W/(m∙K)), respectively, demonstrating their potential for application in high-power-density display and lighting technology.  相似文献   

17.
《Ceramics International》2017,43(7):5478-5483
Porous fibrous mullite ceramics with a narrow range of pore size distribution have been successfully prepared utilizing a near net-shape epoxy resin gel-casting process by using mullite fibers, Al2O3 and SiC as raw materials. The effects of sintering temperatures, different amounts of fibers and Y2O3 additive on the phase compositions, linear shrinkage, apparent porosity, bulk density, microstructure, compressive strength and thermal conductivity were investigated. The results indicated that mullite-bonded among fibers were formed in the porous fibrous mullite ceramics with a bird nest pore structure. After determining the sintering temperatures and the amount of fibers, the tailored porous fibrous mullite ceramics had a low linear shrinkage (1.36–3.08%), a high apparent porosity (61.1–71.7%), a relatively high compressive strength (4.4–7.6 MPa), a low thermal conductivity (0.378–0.467 W/m K) and a narrow range of pore size distribution (around 5 µm). The excellent properties will enable the porous ceramics as a promising candidate for the applications of hot gas filters, thermal insulation materials at high temperatures.  相似文献   

18.
Single-phase (Ce0.2Zr0.2Ti0.2Sn0.2Ca0.2)O2-δ porous high-entropy ceramics have been in-situ fabricated by foam-gelcasting-freeze drying method at different temperatures. The microstructure, phase composition, and properties of the obtained ceramics were investigated. The results indicate that compared with other porous ceramics reported in the literatures, this type of ceramics exhibits excellent performance. The sample prepared at 1350 °C shows high porosity (88.6 %), low thermal conductivity (0.023 W m-1 K-1), and high compressive strength (1.48 MPa). The current study suggests that porous (Ce0.2Zr0.2Ti0.2Sn0.2Ca0.2)O2-δ high entropy ceramics are promising candidates for thermal insulation applications.  相似文献   

19.
《Ceramics International》2022,48(20):30356-30366
Calcium hexaluminate (CA6) porous ceramics were prepared by gel-casting method, with α-Al2O3 and CaCO3 as raw materials and polymethyl methacrylate (PMMA) microspheres as pore-forming agent. The effects of the amount of pore-forming agent PMMA microspheres on the phase composition, bulk density, apparent porosity, flexural strength, microstructure, thermal shock stability and thermal conductivity of CA6 porous ceramics were systematically studied. The pores of CA6 porous ceramics are mainly formed by the burning loss of PMMA microspheres and the decomposition of organic matter. Adding an appropriate amount of PMMA microspheres as pore-forming agent has a positive effect on the thermal shock stability of CA6 porous ceramics. When the amount of pore-forming agent is 15 wt%, the volume density of CA6 porous ceramics is 1.33 g/cm3, the porosity is 63%, the flexural strength is 13.9 MPa, the thermal shock times can reach 9 times, and the thermal conductivity is 0.293 W/(m·K), which can meet the application in refractory, ceramics or high temperature cement industries.  相似文献   

20.
《Ceramics International》2022,48(3):3578-3584
Porous mullite ceramics are potential advanced thermal insulating materials. Pore structure and purity are the main factors that affect properties of these ceramics. In this study, high performance porous mullite ceramics were prepared via aqueous gel-casting using mullite fibers and kaolin as the raw materials and ρ-Al2O3 as the gelling agent. Effects of addition of mullite fibers on the pore structure and properties were examined. The results indicated that mullite phase in situ formed by kaolin, and ρ-Al2O3 ensured the purity of mullite samples and mullite fibers bonded together to form a nest-like structure, greatly improving the properties of ceramic samples. In particular, the apparent porosity of mullite samples reached 73.6%. In the presence of 75% of mullite fibers, the thermal conductivity was only 0.289 W/m K at room temperature. Moreover, the mullite samples possessed relatively high cold compressive strength in the range of 4.9–9.6 MPa. Therefore, porous mullite ceramics prepared via aqueous gel-casting could be used for wide applications in thermal insulation materials, attributing to the excellent properties such as high cold compressive strength and low thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号