首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the piezoelectric coefficient d33 and planar electromechanical coupling coefficient kp were enhanced 145% and 71%, respectively for the <001>-textured (K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3 piezoelectric ceramics compared with their randomly oriented counterpart. Significantly enhanced piezoelectric response in textured ceramics is originated from a combined effect of the intrinsic high piezoelectric activity of <001>-oriented grains in the tetragonal-orthorhombic phases, and easy polarization rotation of fine domains. Furthermore, a comparative analysis suggests that <001>-textured ceramics exhibit good thermal stability, benefiting from the weakened depolarization behavior via crystal orientation. The superior fatigue resistance in textured ceramics can be attributed to the reduced clamping effect as low defect density. These results show that high-performance textured ceramics reported in this work will be promising candidates in the field of lead-free piezoelectric materials.  相似文献   

2.
Vanadium oxides exhibit a broad spectrum of physical properties due to their ability to form various compounds and polymorphs. To utilise a particular property, it is essential to selectively synthesise a desired phase. Herein, we demonstrate a method to selectively and reproducibly grow (00l)-textured VO2(B) thin films using an amorphous SrTiO3 buffer layer by sputtering at <350 °C, which enables their direct integration with read-out-integrated-circuits (ROICs), glass, and polymer substrates. The VO2(B) films exhibit high temperature-coefficient-of-resistances (TCRs) (>−3.5%/K at 25 °C and >−1.5%/K at 95 °C) and low electrical resistivities (∼5 × 10−1 Ω cm at 25 °C and <1 × 10−1 Ω cm at 95 °C), which are favourable for realising highly-sensitive, low-noise, and high-temperature microbolometers. A robust thermal stability of these VO2(B) thin films at ambient pressure will provide new opportunities to incorporate thermal sensing functions to various electronics.  相似文献   

3.
《Ceramics International》2022,48(3):3254-3260
In our work last year (H. Zhu et al., Rhombohedral BiFeO3 thick films integrated on Si with a giant electric polarization and prominent piezoelectricity, Acta Materialia 200 (2020) 305–314), it was demonstrated that the rhombohedral-like, (110)-textured BiFeO3 thick films (~2 μm) sputter-deposited at 450 °C and 500 °C exhibited ultrahigh polarizations of Pr ~ 115 μC/cm2 and 135 μC/cm2, respectively. However, it is not sufficient to explain these ultra-high polarizations by a preferential growth mechanism and the effect of a moderate compressive strain. To further clarify the polarization enhancement of the films, the texture characteristics of these BFO thick films were quantitatively analyzed by fitting the rocking curves and pole figures to the March-Dollase model. The results showed that, in addition to the (110)-textured growth of a BFO thick film under a moderate compressive strain, the minority non-(110)-textured grains also contributed to the enhancement of the total polarization. Our study demonstrates that, the ultra-high polarizations of our BFO thick films can be well explained by adding the contribution from non-textured grains to the preferential growth of the film under a compressive strain.  相似文献   

4.
Piezoelectric textured ceramics have drawn increasing research and industry interests by balancing the production cost and material performances. A new approach to realize the texture in piezoelectric ceramics is developed based on 3D printing stereolithography (SL) technique and successfully applied in the preparation of < 001 > -textured 0.71(Sm0.01Pb0.985)(Mg1/3Nb2/3)O3-0.29(Sm0.01Pb0.985)TiO3 (1 %Sm-PMN-29PT) ceramics in this work. As a critical process in texture ceramic fabrication, the alignment of BaTiO3 templates along the horizontal direction is achieved by the shear force produced from the relative motion between the resin container and the blade during SL. The textured ceramics with obvious grain orientation features are successfully obtained. The enhanced piezoelectric properties of d33 ≈ 652 pC N?1 and d33* ≈ 800 pm V?1 are achieved in the 3D printed textured ceramic, which are about 60 % and 40 %, respectively, higher than their non-textured counterparts. Moreover, the textured sample shows a significant improvement on thermal stability of d33*T, which varies by less than ± 6 % from RT to 110 °C. Furthermore, the introduction of 3D printing into the synthesis of textured piezoelectric ceramics shows great advantages over the traditional tape-casting method. This work is expected to provide a promising way for the future design of textured piezoelectric functional materials.  相似文献   

5.
《Ceramics International》2017,43(11):8004-8009
In this study, <001>-textured 0.99(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3−0.01CaZrO3 [abbreviated as 0.99KNLNS-0.01CZ] lead-free ceramics were prepared by templated grain growth (TGG) using plate-like NaNbO3 templates and sintered by a two-step sintering process with different soaking time. All textured samples with high Lotgering factor (f >85%) presented orthorhombic and tetragonal coexisting phase, and the proportion of orthorhombic phase was varied with prolonged soaking time. A large piezoelectric constant d33 (~ 310 pC/N) was obtained in the textured samples with a 12 h soaking time, which was almost twice larger compared to the randomly oriented one. Furthermore, the field-induced piezoelectric strain coefficient d33*(~ 440 pm/V) of the textured ceramics with 6 h soaking time was larger than the value of randomly oriented one (~ 298 pm/V) at room-temperature. Enhanced piezoelectric response and good temperature stability prove that <001>-textured 0.99KNLNS-0.01CZ ceramics are promising candidates in the field of lead-free piezoelectric materials.  相似文献   

6.
Highly oriented <111> and <110> β‐SiC films were prepared on Si(100) single crystal substrates by laser chemical vapor deposition using a diode laser (wavelength = 808 nm) and HMDS (Si(CH3)3–Si(CH3)3) as a precursor. The effects of laser power (PL), total pressure (Ptot), and deposition temperature (Tdep) on the orientation, microstructure, and deposition rate (Rdep) were investigated. The orientation of the β‐SiC films changed from <111> to random to <110> with increasing PL and Ptot. The <111>‐, randomly, and <110>‐oriented β‐SiC films exhibited dense, cauliflower‐like, and cone‐like microstructures, respectively. Stacking faults were observed in the <111>‐ and <110>‐oriented films, and aligned parallel to the (111) plane in the <111>‐oriented film, whereas they were perpendicular to the (110) plane in the <110>‐oriented film. The highest Rdep of the <111>‐oriented β‐SiC film was 200 μm/h at Ptot = 200 Pa and Tdep = 1420 K, whereas that of the <110>‐oriented film was 3600 μm/h at Ptot = 600 Pa and Tdep = 1605 K.  相似文献   

7.
The effect of sodium concentration on texture development in Bi0.5Na0.5TiO3 [BNT] bulk ceramics was examined. The 〈1 0 0〉-textured specimens were prepared by the reactive-template grain growth process using platelike Bi4Ti3O12 particles. Texture did not extensively develop in stoichiometric and Na-deficient BNT, but excess Na promoted extensive texture development together with densification. The role of excess Na was discussed based on the formation of a liquid phase.  相似文献   

8.
Hui Xia 《Electrochimica acta》2007,52(24):7014-7021
LiCoO2 thin films were prepared by pulsed laser deposition (PLD) on Pt/Ti/SiO2/Si (Pt) and Au/MgO/Si (Au) substrates, respectively. Crystal structures and surface morphologies of thin films were investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The LiCoO2 thin films deposited on the Pt substrates exhibited a preferred (0 0 3) texture with smooth surfaces while the LiCoO2 thin films deposited on the Au substrates exhibited a preferred (1 0 4) texture with rough surfaces. The electrochemical properties of the LiCoO2 films with different textures were compared with charge-discharge, dQ/dV, and Li diffusion measurements (PITT). Compared with the (1 0 4)-textured LiCoO2 thin films, the (0 0 3)-textured thin films exhibited relatively lower electrochemical activity. However, the advantage of the (1 0 4)-textured film only remained for a small number of cycles due to the relatively faster capacity fade. Li diffusion measurements showed that the Li diffusivity in the (0 0 3)-textured film is one order of magnitude lower than that in the (1 0 4)-textured film. As discussed in this paper, we believe that Li diffusion through grain boundaries is comparable to or even faster than Li diffusion through the grains.  相似文献   

9.
Previously, we found 3C-SiC films favor to grow in <111> orientation on Si (110) ( https://doi.org/10.1111/jace.15260 ). However, epitaxial growth of thick <110>-3C-SiC is still a big challenge. In this study, thick 3C-SiC (110) epitaxial films were prepared on Si (110) substrate by laser chemical vapor deposition (LCVD) using hexamethyldisilane (HMDS) in H2 atmosphere. The investigation of growth mechanism showed that the laser of LCVD played an important role during the depositions. Observation by high-resolution transmission electron microscopy (HRTEM) revealed that the interface of 3C-SiC (110)/Si (110) exhibited rough texture at atomic level. The atomic roughness on Si (110) surface could be a key factor for 3C-SiC (110) nucleation. The growth of thick 3C-SiC (110) epitaxial films could be very promising for new development in power electronics applications.  相似文献   

10.
Pure Bi2O3 with high ionic conductivities is considered as a candidate material for an electrolyte in solid oxide fuel cells and oxygen separation membranes. However, its lower structural and thermal stability prevent it application in ion conductivity and photocatalysis at suitable temperatures. Metal oxides are usually used to stabilize its structure to lower temperatures and the underlying mechanism is still unclear. To shed light on the issue, vacancy ordered structures of pure and doped δ-Bi2O3 have been studied by first-principles calculations. It have been shown that the structure with combined <110> and <111> vacancy arrangements is energetically favorable compared to either <100>, <110> or <111> vacancy ordered structures. Electronic structure analyses have further verified that δ-Bi2O3 has a semiconductor character with an energy gap of 2.0 eV, consistent with the experiment results. The site occupation of doping ions is further analyzed by formation energy, geometry and electronic structures. It is evident that the substitution sites of doping ions depend on the type of the doping ions. The ions with large ion sizes tend to occupy the Bi(2) sites while the ions with small ion sizes tend to occupy the Bi(1) sites. At the same time, the probability of the Y ions occupying the oxygen vacancy sites and the optical properties of the Y-doped Bi2O3 are explored. Our investigations reveal that the electronic structure of oxides could be tuned by vacancy and interstitial defects for better conductivity, photocatalytic properties.  相似文献   

11.
AlSBA-15 in the powder form with different nSi/nAl ratios (45, 136 and 215) were synthesized by hydrothermal technique. The powdered materials were made into cylindrical extrudates with the addition of bentonite as a binder. The AlSBA-15 materials were characterized by XRD, N2 adsorption, AAS and thermogravimetric analysis. The orderly growth of AlSBA-15 is evidenced by its XRD. The surface area of the powder catalyst is around 950 m2/g and that of extrudate is close to 600 m2/g. Vapor phase alkylation of phenol with tert-butanol was carried out over the extrudates of AlSBA-15 as a model reaction. The activity of AlSBA-15 extrudates follows the order: AlSBA-15 Si/Al = 45 > AlSBA-15 Si/Al = 136 > AlSBA-15 Si/Al = 215. The reaction products were found to be 2-TBP, 4-TBP and 2,4-DTBP. The selectivity to para tertiary butylation is higher than other reactions.  相似文献   

12.
The MgO-MgAl2O4 eutectic was directionally solidified via micro-pulling down method in the form of rods with 2–3 mm diameter. MgAl2O4 single crystals (with <111> orientation) were used as crystallization seeds. At low pulling rates, especially 0.15 mm/min triangle-like cross-section was observed, which was linked to the eutectic MgAl2O4 following the crystallographic direction of the seed. MgO precipitates in the form of lamellae and rods with median equivalent diameter ranging from 0.19 to 0.85 μm, depending on the pulling rate. The preferred crystallization direction was <111> for both phases, however notable traces of other directions, e.g. <100>, <110> and <331> were found as well.  相似文献   

13.
The ease of Te sublimation from Bi2Te3-based alloys significantly deteriorates thermoelectric and mechanical properties via the formation of voids. We propose a novel strategy based on atomic layer deposition (ALD) to improve the thermal stability of Bi2Te3-based alloys via the encapsulation of grains with a ZnO layer. Only a few cycles of ZnO ALD over the Bi2Te2.7Se0.3 powders resulted in significant suppression of the generation of pores in Bi2Te2.7Se0.3 extrudates and increased the density even after post-annealing at 500 °C. This is attributed to the suppression of Te sublimation from the extrudates. The ALD coating also enhanced grain refinement in Bi2Te2.7Se0.3 extrudates. Consequently, their mechanical properties were significantly improved by the encapsulation approach. Furthermore, the ALD approach yields a substantial improvement in the figure-of-merit after the post-annealing. Therefore, we believe the proposed approach using ALD will be useful for enhancing the mechanical properties of Bi2Te3-based alloys without sacrificing thermoelectric performance.  相似文献   

14.
Effects of hydrostatic extrusion on the thermal properties of polycarbonate (PC) and of high-impact polystyrene (HIPS) were studied using differential scanning calorimeter (DSC) measurements. A glass transition temperature (Tg) and a peak temperature were determined from the DSC curves for both PC and HIPS extrudates. The Tg values of the PC extrudates, with a percentage reduction in area, R, from 40 to 50%, change appreciably from the value for the as–received PC. The results of the hydrostatic extrusion of the PC billets suggest that a two stage deformation process of molecular chains may be involved. Shear-banding is observed for HIPS extrudates with R = 30 to 60%; this fact indicates that a sub-glass transition (β-transition) occurs at temperatures below Tg. It is suggested that the molecular chains of the HIPS extrudate with R = 70% are oriented in the direction of hydrostatic extrusion. The deformation mechanism of molecular chains caused by the hydrostatic extrusion is discussed.  相似文献   

15.
Lead‐free single crystal (Na1/2Bi1/2)TiO3–1.5 at.%Bi(Zn1/2Ti1/2)O3 (NBT–1.5BZT) with dimension of Φ35 mm × 12 mm was successfully grown by a top‐seeded solution growth technique. The average and local structure were studied by a combination of X‐ray diffraction and Raman spectroscopy. The electric and optical properties of <001>‐oriented single crystals were investigated systematically. Compared with pure NBT, the piezoelectric constant and transmission coefficient were both enhanced, that is, from 62 pC/N and ~60% to 121 pC/N and ~70%, respectively. Furthermore, domain structure observation suggested that the <110>‐oriented tetragonal ferroelastic domains in NBT were suppressed at room temperature with addition of BZT, which was responsible for the improved piezoelectric and optical properties of NBT–1.5BZT single crystal.  相似文献   

16.
Random and <001> textured potassium sodium niobate – [K,Na]NbO3 (KNN) ceramics with 1 mole% CuO sintering aid were fabricated in ribbon form through a combination of novel alginate gelation process and templated grain growth methods using platelike sodium niobate ‐ NaNbO3 (NN) template particles. The platelike NN template particles were prepared by a two‐step molten salt synthesis method. Ribbons were drawn from alginate‐based slurries without or with 10 wt% NN template particles using 50 mm long slit nozzle with a rectangular orifice of 10 mm × 1 mm. Development of crystallographic texture as a result of varying sintering time and temperature was evaluated through the calculation of the degree of orientation as measured by the Lotgering factor (?(001)) and an ?(001) of 0.81 was achieved. The electrical properties of textured ribbons were evaluated with polarization and strain versus electric field measurements.  相似文献   

17.
Oxide thermoelectric materials have attracted researchers in recent decade due to their attractive features such as low toxicity, low cost and high chemical robustness. Perovskite based oxide thermoelectric are considered as the promising materials, especially for high temperature thermoelectric applications. In the present work, pure SrTiO3, Sr1-xGdxTiO3 (0 < x < 0.09) and Sr1-xGdxTi1-yNbyO3 were prepared by varying Gd concentration (0 < x < 0.09) using hydrothermal method. The XRD analysis confirmed the high crystalline cubic structured nanocomposite with Gd and Nb substitution. The FESEM images revealed cubic morphology of the particles and the size of the cubes varied with the concentration of the dopant. The chemical compositions of the samples were confirmed by EDX analysis. The binding states and elemental composition of the samples were analyzed by XPS. Both the pure SrTiO3, Sr1-xGdxTiO3 samples show low electrical resistivity and the co-substituted sample exhibited relatively high resistivity. Seebeck coefficient of the samples increased with Gd concentration. The Gd and Nb co-substituted sample shows relatively higher Seebeck coefficient value compared to Gd substituted samples. The power factor of the nanocomposite were calculated from the obtained Seebeck coefficient and resistivity; Gd and Nb co-substituted sample shows relatively high power factor of 311.7 × 10?6 Wm?1K?2 at 550 K compared to other samples.  相似文献   

18.
K Nakamura  K Imada  M Takayanagi 《Polymer》1974,15(7):446-450
The structure and some properties of the solid-state extrudates of isotactic polypropylene (PP) were examined. The crystal modifications of the PP extrudates differed as the extrusion temperature changed. The formation of smectic crystals was observed in the samples extruded at temperatures below 70°C, while the monoclinic modification was predominant above 70°C. The crystal orientation factor, f6, increased with increasing extrusion ratio (ER) and reached 0.988 when ER was 6.3, which was considered to be an upper limit of ER of PP extrusion. The mechanical properties and the thermal shrinkage of the extrudates were also examined. From these measurements the PP extrudates were considered to have structures similar to the drawn PP.  相似文献   

19.
SrTiO3 (STO) film was prepared on quartz glass by laser chemical vapor deposition at a deposition temperature (Tdep) ranged from 760 to 1104 K. Effect of the Tdep on the orientation, crystallinity, texture, and microstructure of the STO film was investigated. As the Tdep was increased, the preferred orientation of the STO film tended to be (110)-orientated with corresponding texture coefficient (TC) on the (110) reflection enhanced from 2.3 to 6; meanwhile, the full width at half maximum of the ω-scan on the (110) reflection decreased from 0.85° to 0.59°. The (110)-oriented grains were in wedge shape about 60 × 150 nm in size, which tended to be flat at an elevated Tdep of 1104 K.  相似文献   

20.
In a search for new thermoelectric materials, indium oxide (In2O3) was selected as a candidate for high-temperature thermoelectric oxide materials due to its intrinsically low thermal conductivity (<2 W/mK) and ZT values around 0.05. However, low electrical conductivity is a factor limiting the thermoelectric performance of this oxide, and was addressed in this study by Mo doping. It was found that Mo is soluble in In2O3 but forms secondary phases at a fraction near x = 0.06 and higher. Mo was found to be unsuitable for heavy n-type doping necessary to improve the thermoelectric performance of the oxide to the desired level (ZT = 1). However, the experimental data enabled us to analyze the electrical conductivity behavior and the Seebeck coefficient of doped In2O3 with different carrier concentrations, predicting a theoretically achievable maximum power factor value of 1.77 × 10?3 W/mK2 at an optimum carrier concentration. This estimation predicts the highest ZT value of 0.75 at 1073 K, assuming the lattice thermal conductivity value remaining at an amorphous level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号