首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ZrC–SiC ceramics were fabricated by high-energy ball milling and reactive hot pressing of ZrH2, carbon black, and varying amounts of SiC. The ceramics were composed of nominally pure ZrC containing 0 to 30 vol% SiC particles. The relative density increased as SiC content increased, from 96.8% for nominally pure ZrC to 99.3% for ZrC-30 vol% SiC. As SiC content increased from 0 to 30 vol%, Young's modulus increased from 404 ± 11 to 420 ± 9 GPa and Vickers hardness increased from 18.5 ± 0.7 to 23.0 ± 0.5 GPa due to a combination of the higher relative density of ceramics with higher SiC content and the higher Young's modulus and hardness of SiC compared to ZrC. Flexure strength was 308 ± 11 MPa for pure ZrC, but increased to 576 ± 49 MPa for a SiC content of 30 vol%. Fracture toughness was 2.3 ± 0.2 MPa·m1/2 for pure ZrC and increased to about 3.0 ± 0.1 MPa·m1/2 for compositions containing SiC additions. The combination of high-energy ball milling and reactive hot pressing was able to produce ZrC–SiC ceramics with sub-micron grain sizes and high relative densities with higher strengths than previously reported for similar materials.  相似文献   

2.
ZrB2 was mixed with 0.5 wt% carbon and up to 10 vol% ZrC and densified by hot-pressing at 2000 °C. All compositions were > 99.8% dense following hot-pressing. The dense ceramics contained 1–1.5 vol% less ZrC than the nominal ZrC addition and had between 0.5 and 1 vol% residual carbon. Grain sizes for the ZrB2 phase decreased from 10.1 µm for 2.5 vol% ZrC to 4.2 µm for 10 vol% ZrC, while the ZrC cluster size increased from 1.3 µm to 2.2 µm over the same composition range. Elastic modulus was ~505 GPa and toughness was ~2.6 MPa·m½ for all compositions. Vickers hardness increased from 14.1 to 15.3 GPa as ZrC increased from 2.5 to 10 vol%. Flexure strength increased from 395 MPa for 2.5 vol% ZrC to 615 MPa for 10 vol% ZrC. Griffith-type analysis suggests ZrB2 grain pullout from machining as the strength limiting flaw for all compositions.  相似文献   

3.
《Ceramics International》2016,42(15):16474-16479
A series of ZrB2-ZrC-SiC composites with various SiC content from 0 to 20 vol% were prepared by reactive hot-pressing using Zr, B4C and SiC as raw materials. Self-propagating high-temperature synthesis (SHS) occurred, and ZrC grains connected each other to form a layered structure when the SiC content is below 20 vol%. The evolution of microstructure has been discussed via reaction processes. The composite with 10 vol% SiC presents the most excellent mechanical properties (four-point bending strength: 828.6±49.9 MPa, Vickers hardness: 19.9±0.2 GPa) and finest grain size (ZrB2: 1.52 µm, ZrC: 1.07 µm, SiC: 0.79 µm) among ZrB2-ZrC-SiC composites with various SiC content from 0 to 20 vol%.  相似文献   

4.
A silicon carbide‐based ceramic, containing 50 vol% SiC, 35 vol% ZrB2, and 15 vol% ZrC was plasma arc welded to produce continuous fusion joints with varying penetration depth. The parent material was preheated to 1450°C and arc welding was successfully implemented for joining of the parent material. A current of 138 A, plasma flow rate of ~1 L/min or ~0.5 L/min, and welding speed of ~8 cm/min were utilized for repeated joining, with full penetration fusion zones along the entire length of the joints. Solidification was determined to occur through the crystallization of β‐SiC (3C), then the simultaneous solidification of SiC and ZrB2, and lastly through the simultaneous solidification of SiC, ZrB2, and ZrC through a ternary eutectic reaction. The ternary eutectic composition was determined to be 35.3 ± 2.2 vol% SiC, 39.3 ± 3.8 vol% ZrB2, and 25.4 ± 3.0 vol% ZrC. A dual fusion zone microstructure was always observed due to convective melt pool mixing. The SiC content at the edge of the fusion zone was 57 vol%, while SiC content at the center of the fusion zone was 42 vol% although the overall SiC content was still nominally 50 vol% throughout the entire fusion zone.  相似文献   

5.
The thermal conductivity, thermal expansion, Youngs Modulus, flexural strength, and brittle–plastic deformation transition temperature were determined for HfB2, HfC0·98, HfC0·67, and HfN0·92 ceramics. The oxidation resistance of ceramics in the ZrB2–ZrC–SiC system was characterized as a function of composition and processing technique. The thermal conductivity of HfB2 exceeded that of the other materials by a factor of 5 at room temperature and by a factor of 2·5 at 820°C. The transition temperature of HfC exhibited a strong stoichiometry dependence, decreasing from 2200°C for HfC0·98 to 1100°C for HfC0·67 ceramics. The transition temperature of HfB2 was 1100°C. The ZrB2/ZrC/SiC ceramics were prepared from mixtures of Zr (or ZrC), SiB4, and C using displacement reactions. The ceramics with ZrB2 as a predominant phase had high oxidation resistance up to 1500°C compared to pure ZrB2 and ZrC ceramics. The ceramics with ZrB2/SiC molar ratio of 2 (25 vol% SiC), containing little or no ZrC, were the most oxidation resistant.  相似文献   

6.
《Ceramics International》2020,46(14):22661-22673
Characteristics of ZrB2–SiC ultrahigh temperature ceramic matrix composites (UHTCMCs) reinforced with ZrC and carbon fiber (Cf) were investigated in this article. Spark plasma sintering (SPS) process was utilized to fabricate the samples at 1800 °C for 5 min under 30 MPa punch pressure and vacuumed atmosphere. In all samples, the volume ratio of ZrB2: SiC was equal to 4:1, and the summation of ZrC and Cf reinforcements was 7.5 vol% with different ZrC: Cf ratios. Field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), densitometry, flexural strength, and hardness measurements were employed for characterization of the prepared samples. Microstructural inspection revealed the formation of SiC sheath around the carbon fibers due to several reactions in the surface SiO2 layers existed on the SiC particles. Optimal flexural strength (628.4 MPa) and hardness (20.8 GPa) values were achieved for the sample co-reinforced with 6.5 vol% ZrC and 1 vol% Cf, with a relative density of 97.7%.  相似文献   

7.
《Ceramics International》2020,46(1):156-164
Spark plasma sintering (SPS) route was employed for preparation of quadruplet ZrB2–SiC–ZrC–Cf ultrahigh temperature ceramic matrix composites (UHTCMC). Zirconium diboride and silicon carbide powders with a constant ZrB2:SiC volume ratio of 4:1 were selected as the baseline. Mixtures of ZrB2–SiC were co-reinforced with zirconium carbide (ZrC: 0–10 vol%) and carbon fiber (Cf: 0–5 vol%), taking into account a constant ratio of 2:1 for ZrC:Cf components. The sintered composite samples, processed at 1800 °C for 5 min and 30 MPa punch press under vacuumed atmosphere, were characterized by densitometry, field emission scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry as well as mechanical tests such as hardness and flexural strength measurements. The results verified that the composite co-reinforced with 5 vol% ZrC and 2.5 vol% Cf had the optimal characteristics, i.e., it reached a relative density of 99.6%, a hardness of 18 GPa and a flexural strength of 565 MPa.  相似文献   

8.
ZrB2 ceramics were prepared by in-situ reaction hot pressing of ZrH2 and B. Additions of carbon and excess boron were used to react with and remove the residual oxygen present in the starting powders. Additions of tungsten were utilized to make a ZrB2-4 mol%W ceramic, while a change in the B/C ratio was used to produce a ZrB2-10 vol% ZrC ceramic. All three compositions reached near full density. The baseline ZrB2 and ZrB2–ZrC composition contained a residual oxide phase and ZrC inclusions, while the W-doped composition contained residual carbon and a phase that contained tungsten and boron. All three compositions exhibited similar values for flexure strength (~520 MPa), Vickers hardness (~15 GPa), and elastic modulus (~500 to 540 GPa). Fracture toughness was about 2.6 MPa m1/2 for the W-doped ZrB2 compared to about 3.8 MPa m½ for the ZrB2 and ZrB2–ZrC ceramics. This decrease in fracture toughness was accompanied by an observed absence of crack deflection in the W-doped ZrB2 compared with the other compositions. The study demonstrated that reaction-hot-pressing can be used to fabricate ZrB2 based ceramics containing solid solution additives or second phases with comparable mechanical properties.  相似文献   

9.
Three phase boride and carbide ceramics were found to have remarkably high hardness values. Six different compositions were produced by hot pressing ternary mixtures of Group IVB transition metal diborides, SiC, and B4C. Vickers’ hardness at 9.8 N was ~31 GPa for a ceramic containing 70 vol% TiB2, 15 vol% SiC, and 15 vol% B4C, increasing to ~33 GPa for a ceramic containing equal volume fractions of the three constituents. Hardness values for the ceramics containing ZrB2 and HfB2 were ~30% and 20% lower than the corresponding TiB2 containing ceramics, respectively. Hardness values also increased as indentation load decreased due to the indentation size effect. At an indentation load of 0.49 N, the hardness of the previously reported ceramic containing equal volume fractions of TiB2, SiC and B4C was ~54 GPa, the highest of the ceramics in the present study and higher than the hardness values reported for so-called “superhard” ceramics at comparable indentation loads. The previously reported ceramic containing 70 vol% TiB2, 15 vol% SiC, and 15 vol% B4C also displayed the highest flexural strength of ~1.3 GPa and fracture toughness of 5.7 MPa·m1/2, decreasing to ~0.9 GPa and 4.5 MPa·m1/2 for a ceramic containing equal volume fractions of the constituents.  相似文献   

10.
《Ceramics International》2023,49(19):31439-31444
In this study, the mechanism of the effect of ZrB2 on phase transformation of Si3N4 at a low temperature and the influence of its content on Si3N4-based ceramics were investigated. Previous study has shown that oxide impurities, i.e., B2O3 and ZrO2 on ZrB2 particles, alone cannot contribute to phase transformation of Si3N4 at a low temperature. But, the introduction of 0.5 vol% ZrB2 into Si3N4 ceramics can promote the α-β phase transformation of Si3N4, which is confirmed to be the role of boron by comparison of the experimental results obtained from the addition of 0.5 vol% Zr and 0.5 vol% B. Increasing the ZrB2 content from 0 vol% to 2.5 vol% intensifies the α-β phase transformation while decreasing the α phase content of Si3N4-based ceramics, accompanied by a slight grain growth, leading to a decrease in hardness. At the same time, aspect ratio and the quantities of elongated grains per square micron increase, and thus the fracture toughness increases significantly. However, when the content of ZrB2 increases to 5 vol%, the Si3N4-based ceramics not only have a substantial decrease in hardness, but also the fracture toughness fails to be effectively improved due to high porosity and the decrease in aspect ratio and the quantity of elongated grains per square micron. The current study demonstrates that the dense Si3N4-based ceramics with high hardness and toughness (hardness ∼19.9 ± 0.2 GPa, toughness ∼6.27 ± 0.19 MPa m1/2) can be prepared successfully at 1600 °C by introducing 0.5 vol% ZrB2.  相似文献   

11.
《Ceramics International》2017,43(12):8982-8988
Damage of structural components of hypersonic vehicles by atmospheric particles demands thorough understanding on their wear behavior. In the present work, dense ZrB2-SiC (10, 20, and 30 vol%) composites are prepared by spark plasma sintering at 55 MPa in two stages: 1400 °C for 6 min followed by 1600 °C for 2 min. With increase in SiC content, microstructures of sintered composites reveal strongly bonded ZrB2 grains with SiC particles. A combination of maximum hardness of 23 GPa, elastic modulus of 398 GPa and fracture toughness of 5.4 MPa m1/2 are obtained for the composite containing 30 vol% SiC particles. It is found that cracks are bridged or deflected by SiC particles in the composites. When the composites are subjected to SiC particle erosion at 800 °C, a 14% decrease in erosion rate is obtained with increase in SiC content from 10 to 30 vol%. The formation of large extent of boro-silicate rich viscous surface on eroded surfaces is attributed to reduced fracture or removal of ZrB2 grains of the composites with increased SiC content.  相似文献   

12.
《Ceramics International》2017,43(17):15047-15052
The combined effects of SiC particles and chopped carbon fibers (Cf) as well as sintering conditions on the microstructure and mechanical properties of spark plasma sintered ZrB2-based composites were investigated by Taguchi methodology. Analysis of variance was used to optimize the spark plasma sintering variables (temperature, time and pressure) and the composition (SiC/Cf ratio) in order to enhance the hardness of ZrB2–SiC–Cf composites. The sintering temperature was found as the most effective variable, with a significance of 83%, on the hardness. The hardest ZrB2-based ceramic was achievable by adding 20 vol% SiC and 10 vol% Cf after spark plasma sintering at 1850 °C for 6 min under 30 MPa. Fracture toughness improvement were related to the simultaneous presence of SiC and Cf phases as well as the in-situ formation of nano-sized interfacial ZrC particles. Crack deflection, crack branching and crack bridging were detected as the toughening mechanisms. A Vickers hardness of 14.8 GPa and an indentation fracture toughness of 6.8 MPa m1/2 were measured for the sample fabricated at optimal processing conditions.  相似文献   

13.
ZrB2–SiC ceramics with relative densities >99% were fabricated by ‘in situ’ reactive hot pressing from ZrH2, B4C and Si. The reaction was studied using two processes, (1) powder reactions at temperatures from 1150 to 1400 °C and (2) reactive hot pressing between 1600 and 1900 °C. The products from the reaction of a 2ZrH2:1B4C:1Si molar mixture were ZrB2, SiC, ZrO2 and ZrC. Modification of the composition to 2ZrH2:1.07B4C:1.16Si resulted in the elimination of the undesired ZrO2 and ZrC phases. The final composition was approximately ZrB2–27 vol% SiC with no undesired phases detected by X-ray diffraction, and only low concentrations of B4C detected by scanning electron microscopy. Elimination of the undesired phases was accomplished by removing surface oxides through chemical reactions at elevated temperatures. Reactively hot pressed samples consisting of ZrB2 with 27 vol% SiC had a Young's modulus of 508 GPa, a flexure strength of 720 MPa, a fracture toughness of 3.5 MPa m1/2 and a Vickers’ hardness of 22.8 GPa.  相似文献   

14.
The mechanical behavior of ZrB2-MoSi2 ceramics made of ZrB2 powder with three different particle sizes and MoSi2 additions from 5 to 70 vol% was characterized up to 1500 °C. Microhardness (12–17 GPa), Young’s modulus (450–540 GPa) and shear modulus (190–240 GPa) decreased with both increasing MoSi2 content and with decreasing ZrB2 grain size. Room temperature fracture toughness was unaffected by grain size or silicide content, whilst at 1500 °C in air it increased with MoSi2 and ZrB2 grain size, from 4.1 to 8.7 MPa m½. Room temperature strength did not trend with MoSi2 content, but increased with decreasing ZrB2 grain size from 440 to 590 MPa for the largest starting particle size to 700–800 MPa for the finest due to the decreasing size of surface grain pullout. At 1500 °C, flexure strength for ZrB2 with MoSi2 contents above 25 vol% were roughly constant, 400–450 MPa, whilst for lower content strength was controlled by oxidation damages. Strength for compositions made using fine and medium ZrB2 powders increased with increasing MoSi2 content, 250–450 MPa. Ceramics made with coarse ZrB2 displayed the highest strengths, which decreased with increasing MoSi2 content from 600 to 450 MPa.  相似文献   

15.
Various SiC-ZrB2-ZrC ceramics were joined by fusion welding to determine the maximum silicon carbide content that could be joined. Commercial powders were hot pressed, machined, and preheated to 1450 °C before joining with a tungsten inert gas welding torch at 160–200 A. Resulting welds were cross-sectioned and analyzed to determine which compositions were weldable and to characterize microstructural evolution in welded samples. As compositions approached the ternary eutectic, the welds had smaller SiC grains and exhibited better weldability. Penetration depth of welds was controlled by a combination of current input and welding speed. The ternary eutectic in the system was found at 36.9 ± 1.3 vol% SiC, 42.7 ± 1.5 vol% ZrB2, and 20.4 ± 1.9 vol% ZrC and its melting temperature was 2330 ± 23 °C. A ternary phase diagram for the SiC-ZrB2-ZrC was constructed and proposed via microstructural analysis of arc melted pellets on binary joins between each binary eutectic and the ternary eutectic in the system.  相似文献   

16.
Dense (97.3%) zirconium diboride (ZrB2) ceramics were obtained via gelcasting and pressureless sintering. Four wt% B4C was used as sintering aid. ZrB2, SiC, and B4C can codisperse well in the alkaline region, using a polyacrylate dispersant. Compared with monolithic ZrB2 (Z), the mechanical properties of ZrB2‐SiC (ZS) were enhanced. The Vickers hardness and fracture toughness of ZS were (13.1 ± 0.6) GPa and (2.5 ± 0.4) MPa m1/2, respectively.  相似文献   

17.
Composites of ZrC–SiC with relative densities in excess of 98% were prepared by reactive hot pressing of ZrC and Si at temperature as low as 1600°C. The reaction between ZrC and Si resulted in the formation of ZrC1?x, SiC, and ZrSi. Low‐temperature densification of ZrC?SiC ceramics is attributed to the formed nonstoichiometric ZrC1?x and Zr–Si liquid phase. Adding 5 wt% Si to ZrC, the three‐point bending strength of formed ZrC0.8–13.4 vol%SiC ceramics reached 819 ± 102 MPa with hardness and toughness being 20.5 GPa and 3.3 MPa·m1/2, respectively.  相似文献   

18.
A carbide boronizing method was first developed to produce dense boron carbide‐ zirconium diboride (“B4C”–ZrB2) composites from zirconium carbide (ZrC) and amorphous boron powders (B) by Spark Plasma Sintering at 1800°C–2000°C. The stoichiometry of “B4C” could be tailored by changing initial boron content, which also has an influence on the processing. The self‐propagating high‐temperature synthesis could be ignited by 1 mol ZrC and 6 mol B at around 1240°C, whereas it was suppressed at a level of 10 mol B. B8C–ZrB2 ceramics sintered at 1800°C with 1 mole ZrC and 10 mole B exhibited super high hardness (40.36 GPa at 2.94 N and 33.4 GPa at 9.8 N). The primary reason for the unusual high hardness of B8C–ZrB2 ceramics was considered to be the formation of nano‐sized ZrB2 grains.  相似文献   

19.
ZrB2 ceramics containing 10-30 vol% SiC were pressurelessly sintered to near full density (relative density >97%). The effects of carbon content, SiC volume fraction and SiC starting particle size on the mechanical properties were evaluated. Microstructure analysis indicated that higher levels of carbon additions (10 wt% based on SiC content) resulted in excess carbon at the grain boundaries, which decreased flexure strength. Elastic modulus, hardness, flexure strength and fracture toughness values all increased with increasing SiC content for compositions with 5 wt% carbon. Reducing the size of the starting SiC particles decreased the ZrB2 grain size and changed the morphology of the final SiC grains from equiaxed to whisker-like, also affecting the flexure strength. The ceramics prepared from middle starting powder with an equiaxed SiC grain morphology had the highest flexure strength (600 MPa) compared with ceramics prepared from finer or coarser SiC powders.  相似文献   

20.
Novel TiC-based composites were synthesized by reactive hot-pressing at 1800 °C for 1 h with ZrB2 addition as a sintering aid for the first time. The effects of ZrB2 contents on the phase composition, microstructure evolution, and mechanical properties were reported. Based on the reaction and solid solution coupling effects between ZrB2 and TiC, the product ZrC may be partially or completely dissolved into the TiC matrix, and then phase separation within the miscibility gap is observed to form lamellar nanostructured ZrC-rich (Zr, Ti)C. The TiC-10 mol.% ZrB2 (starting batch composition) exhibits good comprehensive mechanical properties of hardness 27.7 ± 1.3 GPa, flexural strength 659 ± 48 MPa, and fracture toughness of 6.5 ± 0.6 MPa m1/2, respectively, which reach or exceed most TiC-based composites using ceramics as sintering aids in the previous reports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号