共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(6):6800-6806
2D KD-1 SiC fiber fabrics were employed to fabricate SiCf/SiC composites by an improved polymer infiltration and pyrolysis (PIP) process, combined with cold isostatic pressing (CIP). The effect of CIP process on the microstructure, mechanical and dielectric properties of SiCf/SiC composites was investigated. The infiltration efficiency was remarkably improved with the introduction of CIP process. Compared to vacuum infiltration, the CIP process can effectively increase the infiltrated precursor content and decrease the porosity resulting in a dense matrix. Thus SiCf/SiC composites with high density of 2.11 g cm−3 and low porosity of 11.3% were obtained at 100 MPa CIP pressure, together with an increase of the flexural strength of the composites from 89 MPa to 213 MPa. Real part (ε′) and the imaginary part (ε″) of complex permittivity of SiCf/SiC composites increase and vary from 11.7-i9.7 to 15.0-i12.8 when the CIP pressure reaches 100 MPa. 相似文献
2.
《Journal of the European Ceramic Society》2020,40(2):290-297
Continuous carbon fiber (Cf) reinforced silicon carbide (SiC) matrix composite (Cf/SiC) was processed through hot pressing (HP) using polycarbosilane (PCS) in matrix and polysilazane in interphase regions as polymer binders. HP experiments were conducted at 4 MPa, 1200 °C and 1 h; followed by PCS polymer impregnation and pyrolysis (PIP) at 1200 °C under vacuum. The BN/SiC-Si3N4 interphase formed on the Cf cloth during BN dispersed polysilazane polymer coating and pyrolysis. The influence of PCS quantity during HP experiments on Cf/SiC composites was studied. Results suggest that sintering of SiC matrix in Cf/SiC composite improves by increasing PCS content during HP; however, high PCS content increases the liquidity of SiC-PCS mixture to flow out of the composite structure. The Cf/SiC composites with relative density ranging from 79 to 83% and flexural strength from 67 to 138 MPa was achieved. 相似文献
3.
《Ceramics International》2019,45(11):14006-14014
Stereolithography based additive manufacturing provides a new route to produce ceramic architectures with complex geometries. In this study, 3D structured SiC ceramic architectures were fabricated by stereolithography based additive manufacturing combined with precursor infiltration and pyrolysis (PIP). Firstly, photosensitive SiC slurry was prepared. Then, stereolithography was conducted to fabricate complex-shaped green SiC parts. Polymer burn-out was subsequently performed, and porous SiC preforms were produced. After that, precursor infiltration and pyrolysis was used to improve the density and strength. Finally, 3D-structured SiC ceramic architectures with high accuracy and quality were obtained. It is believed that this study can give some fundamental understanding for the additive manufacturing of SiC ceramic structures. 相似文献
4.
Traditionally, SiC components with complex shapes are very difficult or even impossible to fabricate. This paper aims to develop a new manufacturing process, combining selective laser sintering (SLS), cold isostatic pressing (CIP) and polymer infiltration pyrolysis (PIP), to manufacture complex silicon carbide parts and improve the mechanical properties of silicon carbide ceramic parts. The density and porosity of SiC/SiC composites were measured. Furthermore, the mechanical properties of the specimens with cold isostatic pressing and the specimens without cold isostatic pressing were compared. The bending strength of the specimens with cold isostatic pressing was 201?MPa, and the elastic modulus was 1.27?GPa. And, the bending strength of the specimens without cold isostatic pressing was 142?MPa, and the elastic modulus was 0.88?GPa. Increasing the density of SiC/SiC can enhance the mechanical properties of SiC/SiC composites. 相似文献
5.
Hexagonal-shaped SiC nanowires were in situ formed in C/SiC composites with ferrocene as catalyst in the densification process of polymer impregnation and pyrolysis. The effect of SiC nanowires on microstructure and properties of the composites were studied. The results show that the in situ formed SiC nanowires were hexagonal, mostly with diamer of about 250 nm, and grew by the vapor–liquid–solid (VLS) mechanism. The C/SiC composite with nanowires shows higher bulk density and flexural strength than the one with no SiC nanowires, and the high temperature flexural strength behavior of C/SiC composites with SiC nanowires was evaluated. 相似文献
6.
《Ceramics International》2016,42(8):9557-9564
In this work the influence of the processing routes on the microstructure and properties of Ti3SiC2-based composites was investigated. The three main processing steps are (i) three-dimensional printing of Ti3SiC2 powder blended with dextrin, (ii) pressing of printed samples (uniaxial or cold isostatic pressing), and (iii) sintering of pressed samples at 1600 °C for 2 h. The Ti3SiC2-based composites were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Young's Modulus and flexural strength were measured to examine the mechanical properties. Porosity, density, shrinkage, and mass change were measured at each processing step. Those samples uniaxially pressed at 726 MPa presented the highest density, shrinkage, and mass change. However, microstructural morphologies were crack-free and homogeneous for cold isostatic pressed Ti3SiC2-based composites as compared to uniaxially pressed samples. The highest values for Young's Modulus (~300 GPa) and flexural strength (~3 GPa) were observed with uniaxially pressed Ti3SiC2-based composites. 相似文献
7.
《Ceramics International》2015,41(8):9572-9576
Carbon fiber reinforced silicon carbide (C/SiC) composites fabricated by polymer impregnation and pyrolysis (PIP) have been exposed in simulated space atomic oxygen (AO) environment for up to 15 h. The mechanical properties and chemical composition of PIP C/SiC composites have been studied. The results show that the mass loss of the composites increases at the beginning and then decreases as the exposure time lasts. The flexural properties of C/SiC composites have no obvious changes after up to 15 h exposure in AO. C/SiC composites have been oxidized slightly by AO. The amorphous carbon in the matrix has been oxidized to CO or CO2 gas and SiC has been oxidized to SiO gas and SiO2. 相似文献
8.
《Ceramics International》2021,47(19):26971-26977
The SiCf/SiC composites have been manufactured by a hybrid route combining chemical vapor infiltration (CVI) and precursor infiltration and pyrolysis (PIP) techniques. A relatively low deposition rate of CVI SiC matrix is favored ascribing to that its rapid deposition tends to cause a ‘surface sealing’ effect, which generates plenty of closed pores and severely damages the microstructural homogeneity of final composites. For a given fiber preform, there exists an optimized value of CVI SiC matrix to be introduced, at which the flexural strength of resultant composites reaches a peak value, which is almost twice of that for composites manufactured from the single PIP or CVI route. Further, this optimized CVI SiC amount is unveiled to be determined by a critical thickness t0, which relates to the average fiber distance in fiber preforms. While the deposited SiC thickness on fibers exceeds t0, closed pores will be generated, hence damaging the microstructural homogeneity of final composites. By applying an optimized CVI SiC deposition rate and amount, the prepared SiCf/SiC composites exhibit increased densities, reduced porosity, superior mechanical properties, increased microstructural homogeneity and thus reduced mechanical property deviations, suggesting a hybrid CVI and PIP route is a promising technique to manufacture SiCf/SiC composites for industrial applications. 相似文献
9.
Enhanced microwave‐absorbing property of precursor infiltration and pyrolysis derived SiCf/SiC composites at X band: Role of carbon‐rich interphase 下载免费PDF全文
Ceramic matrix composites (CMCs) can be microwave‐absorbent when endowing the composite constituents with proper dielectric properties. In this work, we report a new method to enhance the microwave‐absorbing property of CMCs by in situ fabrication of a carbon‐rich interphase at the fiber/matrix interface. This was achieved in a SiC fiber reinforced SiC matrix (SiCf/SiC) composite fabricated by precursor infiltration and pyrolysis (PIP). We found that as the PIP temperature increased from 800 to 1000°C, the microwave‐absorbing property of the SiCf/SiC composite was significantly enhanced at X band, which also surpassed those of the SiC fiber and monolithic SiC ceramic fabricated at the same temperature. The dominant mechanism was studied by decoupling the effect of individual SiC fibers, SiC matrix, and fiber/matrix interface. The results showed that the SiC fiber and SiC matrix were barely microwave‐absorbent, due to their low dielectric losses. The microwave‐absorbing mechanism was finally ascribed to the fiber/matrix interface, which was carbon‐rich, containing Si and O elements. The interphase showed a conductivity that was superior to that of the fiber and the matrix, and mainly dominated the dielectric property of the overall composite. The results highlight the role of carbon‐rich interphase on the microwave‐absorbing property of CMCs. 相似文献
10.
《Ceramics International》2020,46(7):9303-9310
The employment of coating technique on the silicon carbide fibers plays a pivotal role in preparing SiC fiber-reinforced SiC composites (SiCf/SiC) toward electromagnetic wave absorption applications. In this work, SiC nanowires (SiCNWs) are successfully deposited onto the pyrolytic carbon (PyC) coated SiC fibers by an electrophoretic deposition method, and subsequently densified by chemical vapor infiltration to obtain SiCNWs/PyC-SiCf/SiC composites. The results reveal that the introduction of SiCNWs could markedly enhance the microwave absorption properties of PyC-SiCf/SiC composites. Owing to the increasing of SiCNWs loading, the minimum reflection loss of composites raises up to −58.5 dB in the SiCNWs/PyC-SiCf/SiC composites with an effective absorption bandwidth (reflection loss ≤ −10 dB) of 6.13 GHz. The remarkable enhancement of electromagnetic wave absorption performances is mainly attributed to the improved dielectric loss ability, impedance matching and multiple reflections. This work provides a novel strategy in preparing SiCf/SiC composites with excellent electromagnetic wave absorption properties. 相似文献
11.
《Ceramics International》2022,48(2):1532-1541
In order to improve the degree of matrix densification of SiCf/SiC composites based on liquid silicon infiltration (LSI) process, the microstructure and mechanical properties of composites according to various pyrolysis temperatures and melt infiltration temperatures were investigated.Comparing the microstructures of SiCf/C carbon preform by a one-step pyrolysis process at 600 °C and two-step pyrolysis process at 600 and 1600 °C, the width of the crack and microcrack formation between the fibers and matrix in the fiber bundle increased during the two-step pyrolysis process. For each pyrolysis process, the density, porosity, and flexural strength of the SiCf/SiC composites manufactured by the LSI process at 1450–1550 °C were measured to evaluate the degree of matrix densification and mechanical properties. As a result, the SiCf/SiC composite that was fabricated by the two-step pyrolysis process and LSI process showed an 18% increase in density, 16%p decrease in porosity, and 150% increase in flexural strength on average compared to the composite fabricated by the one-step pyrolysis process.In addition, among the SiCf/SiC specimens fabricated by the LSI process after the same two-step pyrolysis process, the specimen that underwent the LSI process at 1500 °C showed 30% higher flexural strength on average than those at 1450 or 1550 °C. Furthermore, under the same pyrolysis temperature, the mechanical strength of SiCf/SiC specimens in which the LSI process was performed at 1500 °C was higher than that of the 1550 °C although both porosity and density were almost similar. This is because the mechanical properties of the Tyranno-S grade SiC fibers degraded rapidly with increasing LSI process temperature. 相似文献
12.
《Journal of the European Ceramic Society》2021,41(15):7601-7609
The response of C/SiC composites prepared via precursor impregnation and pyrolysis was investigated in a 1 MW plasma wind tunnel. Under a considerable aero heating of up to 26.2 MJ/kg of specific total enthalpy, the samples were exposed to heat fluxes exceeding 5.7 MW/m2 and low pressures of 4.5–6.6 kPa. The samples were able to withstand low heat fluxes and low stagnation pressures, and their carbon-rich nature improved the thermal conductivity, presenting a low steadystate surface temperature. However, a spontaneous jump in the surface temperature at around 1700 °C was observed at high heat fluxes and high stagnation pressures. The jump temperature was lower compared with that reported in previous studies, and was found to increase rapidly to temperatures above 2000 °C. This low-temperature jump phenomenon was associated with the evolution of microstructure during testing, and the underlying mechanism was revealed through the use of thermodynamics analysis. 相似文献
13.
《Ceramics International》2022,48(2):1740-1744
A novel SiC coating with a relatively high crack resistance property (crack extension force (GC): 12.0 J·m?2) and outstanding thermal shock resistance was achieved merely by pack cementation. Compared with the conventional SiC coating with Al2O3 addition (AOSC2), SiC coating with Al–B–C additions (ABSC2) possesses refined and denser microstructure owing to different effects in promoting SiC densification under different additions. Therefore, the improvement in microstructures results in superior mechanical capabilities, antioxidation performance (900 °C), and thermal shock resistance (between 1500 °C and room temperature). 相似文献
14.
《Ceramics International》2015,41(6):7359-7365
A soluble polymer precursor for ultra-fine zirconium carbide (ZrC) was successfully synthesized using phenol and zirconium tetrachloride as carbon and zirconium sources, respectively. The pyrolysis behavior and structural evolution of the precursor were studied by Fourier transform infrared spectra (FTIR), differential scanning calorimetry, and thermal gravimetric analysis (DSC–TG). The microstructure and composition of the pyrolysis products were characterized by X-ray diffraction (XRD), laser Raman spectroscopy, scanning electron microscope (SEM) and element analysis. The results indicate that the obtained precursor for the ultra-fine ZrC could be a Zr–O–C chain polymer with phenol and acetylacetone as ligands. The pyrolysis products of the precursor mainly consist of intimately mixed amorphous carbon and tetragonal ZrO2 (t-ZrO2) in the temperature range of 300–1200 °C. When the pyrolysis temperature rises up to 1300 °C, the precursor starts to transform gradually into ZrC, accompanied by the formation of monoclinic ZrO2 (m-ZrO2). The carbothermal reduction reaction between ZrO2 and carbon has been substantially completed at a relatively low temperature (1500 °C). The obtained ultra-fine ZrC powders exhibit as well-distributed near-spherical grains with sizes ranging from 50 to 100 nm. The amount of oxygen in the ZrC powders could be further reduced by increasing the pyrolysis temperature from 1500 to 1600 °C but unfortunately the obvious agglomeration of the ZrC grains will be induced. 相似文献
15.
Polysiloxane loaded with SiC as inert filler, and Al as active filler, was pyrolyzed in nitrogen to fabricate SiOC composites, and the processing and properties of the filled SiOC composites were investigated. Adding SiC fillers could reduce the linear shrinkage of filler-free cured polysiloxane in order to obtain monolithic SiC/SiOC composites. The flexural strength of SiC/SiOC composites reached 201.3 MPa at a SiC filler content of 27.6 vol.%. However, SiC/SiOC composites exhibited poor oxidation resistance, thermal shock resistance and high temperature resistance. Al fillers could react with hydrocarbon generated during polysiloxane pyrolysis at 600 °C and N2 at 800 °C to form Al4C3 and AlN, respectively. The volume expansions resulting from these two reactions were in favor of the reduction in linear shrinkage and the improvement in flexural strength of SiC/SiOC composites. The flexural strength of Al-containing SiC/SiOC composites was 1.36 times that of SiC/SiOC composites without Al at an Al filler content of 20 vol.%. The addition of Al fillers remarkably improved the high temperature resistance and oxidation resistance of SiC/SiOC composites, but not thermal shock resistance. 相似文献
16.
《Journal of the European Ceramic Society》2022,42(5):1947-1954
Capillary infiltration is an innovative fabrication method for metal and ceramic-matrix composites. SiC/SiC composites can be infiltrated by molten silicon to decrease residual porosity. Physical and chemical mechanisms involved during Liquid Silicon Infiltration (LSI) are complex to analyse. An in situ observation setup for capillary infiltration of molten silicon has been designed for synchrotron observations. The setup reproduces the extreme high temperature and high vacuum conditions used in the LSI process. It is also designed for X-ray observations in synchrotron beamlines and tomography stages. Sets of 2D X-ray absorption radiographs were acquired at high frequency during the LSI process. The study outlines the capillary infiltration mechanisms of molten silicon inside SiC/SiC composites. It proves that full saturation of the composite is not directly achieved after the rise of molten silicon. It is a two step mechanism. First, the infiltration occurs inside the intra granular porosity of the SiC powder matrix. Then, larger scale porosities such as cracks are filled. These phenomena have been discussed previously in the literature but never observed in situ. 相似文献
17.
《Journal of the European Ceramic Society》2017,37(4):1311-1320
A hybrid processing route based on vacuum infiltration, electrophoretic deposition, and hot-pressing was adopted to fabricate dense and tough SiCf/SiC composites. The as-received Tyranno SiC fabric preform was infiltrated with phenolic resin containing 5 wt.% FeO and SiC powders followed by pyrolysis at 1700 °C for 4 h to form an interphase. Electrophoretic deposition was performed to infiltrate the SiC-based matrix into the SiC preforms. Finally, SiC green tapes were sandwiched between the SiC fabrics to control the volume fraction of the matrix. Densification close to 95% ρtheo was achieved by incorporating 10 wt.% Al2O3-Sc2O3 sintering additive to facilitate liquid phase sintering at 1750 °C and 20 MPa for 2 h. X-ray diffraction and Raman analyses confirmed the catalytic utility of FeO by the formation of a pyrolytic carbon phase. The flexural response was explained in terms of the extensive fractography results and observed energy dissipating modes. 相似文献
18.
《应用陶瓷进展》2013,112(7):375-381
AbstractAbstractSiC fibre reinforced SiC–matrix ceramic composites were fabricated by electrophoretic deposition (EPD) combined with ultrasonication. Fine β-SiC powder and Tyranno-SA fabrics were used as the matrix and fibre for reinforcement, respectively. Different amounts of fine Al2O3–Y2O3 were added for liquid phase assisted sintering. For EPD, highly dispersed slurry was prepared by adjusting the zeta potentials of the constituent particles to ?+40 mV for homogeneous deposition. The composite properties were compared after using two different consolidation methods: hot pressing for 2 h at 20 MPa and spark plasma sintering (SPS) for 3 min at 45 MPa at 1750°C to minimise the damage to the SiC fibre. The maximum flexural strength and density for the 45 vol.-% fibre content composites were 482 MPa and 98% after hot pressing, respectively, whereas those for SPS were 561 MPa and 99·5%, indicating the effectiveness of SPS. 相似文献
19.
《Journal of the European Ceramic Society》2020,40(8):2811-2820
In this work, Amosic-3 SiC/SiC composites were irradiated to 10 dpa and 115 dpa with 300 keV Si ions at 300 °C. To evaluate its irradiation behaviour and investigate the underlying mechanism, nanoindentation, AFM, Raman and electron microscopy were utilized. Nanoindentation showed that although micromechanical properties declined after irradiation, hardness and Young’s modulus were maintained better under 115 dpa. AFM manifested differential swelling among PyC interface, fiber and matrix and SEM showed irradiation-induced partial interface debonding, which are both more obvious under 115 dpa. TEM revealed the generation and proliferation of amorphous regions, which is according with the decline and broadening of peaks in Raman spectra. The material was almost completely amorphous after irradiated to 10 dpa while recrystallization occurred under 115 dpa. All results mentioned above contribute to the decline of hardness and Young’s modulus and may explain why the micromechanical degradation was more significant under 10 dpa. 相似文献
20.
《Ceramics International》2019,45(14):17442-17446
A low-viscous liquid polycarbosilane (LPCS) is being proposed as a silicon carbide (SiC) precursor for chemical liquid vapour deposition (CLVD) process. The LPCS was characterized by Gel permeation chromatography (GPC), Fourier transformation infrared (FT-IR) spectroscopy, Nuclear magnetic resonance (NMR) spectroscopy, GC-MS and Thermogravimetric analysis (TGA). Spectroscopic investigations together with Gas chromatography Mass spectrum (GC-MS) indicated that the synthesized LPCS is a mixture of cyclic/linear silanes and carbosilanes. TGA showed the complete evaporation of the LPCS below 250 °C, a suitable property for application as a CLVD precursor. Ceramic conversion of LPCS at different temperatures (900 °C, 1100 °C and 1300 °C) under argon, indicated the formation of nano-sized crystallites of β-SiC at 1300 °C. 相似文献