首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alumina-silicon carbide-whisker composites were hot isostatically pressed at 1550°C and 200 MPa for 1 h. The silicon carbide whiskers were treated in different acid and gas environments before they were pressed. All samples exhibited linear elastic behavior with no ductility tendency. Improved strength and fracture toughness were obtained compared with unreinforced alumina. Mechanisms for the improved mechanical properties are discussed. These include grain growth control, whisker encapsulation of defects, and related stress relief at the defect.  相似文献   

2.
    
《Ceramics International》2020,46(4):4154-4158
Highly transparent MgAl2O4 ceramics have been fabricated by aqueous gelcasting combined with cold isostatic pressing (CIP), pressureless sintering and hot isostatic pressing (HIP) from high purity spinel nanopowders. The gelling system used AM and MABM as monomer and gelling agent. The influences of dispersant and PH on the rheological behavior of the MgAl2O4 slurries were investigated. The spinel slurry with low solids loading (25 vol%) and low viscosity (0.15 Pa s) was obtained by using 6 wt% Duramax-3005 (D-3005) as dispersant. After CIP, the green body had a relative density of 48% with a narrow pore size distribution. The influence of sintering temperature on densification and microstructure was studied, choosing 1500 °C as the sintering temperature. After HIP (1650 °C/177 MPa/5 h), transparent MgAl2O4 ceramic with the thickness of 3 mm was obtained, whose in-line transmittance was 86.4% at 1064 nm and 79.8% at 400 nm, respectively. The ceramic exhibited a dense microstructure with the average grain size of 23 μm. The Vickers hardness and flexure strength of the sample reached 13.6 GPa and 214 MPa, respectively.  相似文献   

3.
《Ceramics International》2016,42(8):9557-9564
In this work the influence of the processing routes on the microstructure and properties of Ti3SiC2-based composites was investigated. The three main processing steps are (i) three-dimensional printing of Ti3SiC2 powder blended with dextrin, (ii) pressing of printed samples (uniaxial or cold isostatic pressing), and (iii) sintering of pressed samples at 1600 °C for 2 h. The Ti3SiC2-based composites were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Young's Modulus and flexural strength were measured to examine the mechanical properties. Porosity, density, shrinkage, and mass change were measured at each processing step. Those samples uniaxially pressed at 726 MPa presented the highest density, shrinkage, and mass change. However, microstructural morphologies were crack-free and homogeneous for cold isostatic pressed Ti3SiC2-based composites as compared to uniaxially pressed samples. The highest values for Young's Modulus (~300 GPa) and flexural strength (~3 GPa) were observed with uniaxially pressed Ti3SiC2-based composites.  相似文献   

4.
This work aims to use κ-Al2O3 transition alumina to prepare alumina ceramics without cracks. It is found that the major reason for the cracking of κ-Al2O3 sintered bodies formed by traditional wet molding process is the inner stress in green bodies rather than the volume reduction during the κ-Al2O3 – α-Al2O3 phase transformation. The cold isostatic pressing can be used to eliminate the inner stress generated in the green bodies, the sintered bodies have no cracks and possess the microstructure which is close to that of the α-Al2O3 ceramic products formed by wet molding process. Due to the fact that the calcining temperature of κ-Al2O3 is much lower than that of α-Al2O3 (1050?°C in comparison with 1400?°C), the application of κ-Al2O3 can lower the production cost significantly.  相似文献   

5.
碳化硅陶瓷及其复合材料的热等静压氮化   总被引:2,自引:0,他引:2  
通过对SiC陶瓷,SiC-TiC复相陶瓷以及SiC晶须补强SiC基复合材料在氮气氛中进行高温的氮化处理,成功地实现了这些材料的开口气孔与表面裂纹的愈合。有关研究表明:热等静压氮化工艺可以显著提高SiC陶瓷及其复合材料的抗强度,对断裂韧性也有较大的改善作用。  相似文献   

6.
    
《Ceramics International》2021,47(22):31277-31285
In this study, a high-strength silicon nitride (Si3N4) antenna window was successfully developed via selective laser sintering (SLS) with cold isostatic pressing (CIP) after debinding before final sintering. The effects of CIP after debinding and sintering aids on the bulk density, total porosity, bending strength and microstructure of Si3N4 ceramics were examined. The results show that the bending strength of SLS Si3N4 ceramics can be greatly improved by adding sintering aids between Si3N4 granules and by CIP after debinding. Optimal performance of ceramics is obtained by CIP after debinding and the use of inter-granule sintering aids. The porosity, bulk density, and bending strength are 18.7%, 3.11 g/cm3, and 685 MPa, respectively. Eliminating the pores by the CIP after debinding and by inter-granule sintering aids promotes the growth of rod-like β-Si3N4, which lock with each other contribute to the strengthening of Si3N4 ceramics.  相似文献   

7.
HIP-Sintered Composites of C (Diamond)/SiC   总被引:1,自引:0,他引:1  
Diamond (carbon) and silicon powders were mixed and HIPed under temperatures of 1300°–1500°C and pressure at 50 MPa for 30 min. When heated at >1300°C, the products were >90% sintered compacts. Density and bending strength were measured. The highest values of 3.3 g/cm3 and 750 MPa were obtained when the starting material was a mixture of fine and coarse-grained diamond and silicon powder. The photomicrograph of polished surface of the product revealed that it consisted primarily of two types of substances with few pores. XRD showed the coexistence of diamond and SiC. No trace of conversion reaction from diamond to graphite was seen, although the sample was treated under conditions in which diamond was thermodynamically metastable. The summarized results suggest that the HIP process can be a useful way to synthesize diamond/SiC composites.  相似文献   

8.
A novel ceramic microfabrication process—based on the idea of silicon carbide (SiC) reaction sintering within a micromachined silicon mold—has been developed to produce a SiC microroter for miniaturized gas turbines. The new process involves the micromachining of silicon molds; filling the molds with powder mixtures of α-SiC, graphite, and phenol resin; bonding the molds with an adhesive; reaction sintering by hot isostatic pressing (HIP); and the releasing of a reaction-sintered workpiece from the mold by wet etching. Using this process, we have successfully fabricated SiC microrotors with a diameter of 5 mm, whose complicated geometry was well transferred from the negative shape of the micromachined silicon mold. The reaction-HIPed SiC ceramics within Si molds showed reasonably good mechanical properties, which are comparable to those of the commercialized reaction-sintered SiC ceramics.  相似文献   

9.
To improve the density of SiC ceramic components with complicated shape built by laser sintering (LS), cold isostatic pressing (CIP) and reaction sintering (RS) were incorporated into the process. In the process of LS/CIP/RS, Phenol formaldehyde resin (PF)-SiC composite powder was prepared by mechanical mixing and cold coating methods, with an optimized content of PF at 18?wt%. For the purpose of obtaining improved density of the sintered body after final reaction sintering, carbon black was added into the initial mixed powder. The material preparation, LS forming and densification steps were optimized throughout the whole fabrication process. The final sintered SiC bodies with the bending strength of 292 ~ 348?MPa and the density of 2.94–2.98?g?cm? 3 were prepared using the PF coated SiC-C composite powder and the LS / CIP / RS process. The study further showed a positive and practical approach to fabricate SiC ceramic parts with complicated shape using additive manufacturing technology.  相似文献   

10.
本研究通过采用纳米SiC粉体及有机前驱体两种途径,制备了Si_3N_4/纳米SiC粒子(Si_3N_4/纳米SiCp)复相陶瓷,研究了这些材料的显微结构特点,讨论了材料强化的机制与显微结构的关系。  相似文献   

11.
等静压石墨生产中,除气是一步重要的环节,它对成型工艺、压坯性能有较大的影响。本文针对冷/热等静压法生产特种石墨,主要从压坯的形貌、体积密度、显气孔率和抗压强度来分析除气对工艺和产品质量的影响。  相似文献   

12.
3D打印成型陶瓷零件坯体及其致密化技术   总被引:1,自引:0,他引:1       下载免费PDF全文
3D打印技术在陶瓷零件成型方面具有较大应用潜力,被认为是近净尺寸成型高性能复杂结构陶瓷零件的一种新途径。本文比较了陶瓷零件或其坯体的激光选区熔化、薄材叠加制造、熔融沉积造型、光固化、三维打印和激光选区烧结等不同3D打印工艺及其致密化手段的优势和不足,认为较低的相对密度和强度是阻碍3D打印陶瓷零件实现产品应用的主要障碍。本团队近年来采用造粒混合法制备出具有良好流动性的3D打印复合陶瓷粉体,再通过激光选区烧结(SLS)和冷等静压(CIP)技术分别进行坯体成型及均匀致密化处理,制备出了高性能、复杂结构的Al_2O_3致密陶瓷零件。本文回顾了这些工作,并补充介绍了溶解沉淀和溶剂蒸发这两种制备复合陶瓷粉体的新方法,利用SLS/CIP复合工艺进一步制造了ZrO_2、SiC、高白土等其它材质的复杂陶瓷零件,为3D打印陶瓷用于航空航天、医疗、艺术等领域奠定了基础。  相似文献   

13.
《Ceramics International》2016,42(6):6800-6806
2D KD-1 SiC fiber fabrics were employed to fabricate SiCf/SiC composites by an improved polymer infiltration and pyrolysis (PIP) process, combined with cold isostatic pressing (CIP). The effect of CIP process on the microstructure, mechanical and dielectric properties of SiCf/SiC composites was investigated. The infiltration efficiency was remarkably improved with the introduction of CIP process. Compared to vacuum infiltration, the CIP process can effectively increase the infiltrated precursor content and decrease the porosity resulting in a dense matrix. Thus SiCf/SiC composites with high density of 2.11 g cm−3 and low porosity of 11.3% were obtained at 100 MPa CIP pressure, together with an increase of the flexural strength of the composites from 89 MPa to 213 MPa. Real part (ε′) and the imaginary part (ε″) of complex permittivity of SiCf/SiC composites increase and vary from 11.7-i9.7 to 15.0-i12.8 when the CIP pressure reaches 100 MPa.  相似文献   

14.
The deformation behavior of boron- and carbon-doped β-silicon carbide (B,C-SiC) with an average grain size of 260 ± 18 nm containing 1 wt% boron was investigated by compression testing at elevated temperatures. Extensive grain growth during deformation was observed. The stress–strain curves were compensated for grain growth by assuming power-law type of dependence on grain size and strain rate. The stress exponent n was ∼1.3 and the grain size exponent p was ∼2.7 at temperatures ranging from 1593° to 1758°C. The apparent activation energy of deformation Q d was ∼760 kJ/mol, which was lower than the activation energy for lattice diffusion of silicon and carbon in SiC and higher than that for grain-boundary diffusion of carbon in SiC. These results suggest that the deformation mechanism of the fine-grained B,C-SiC is grain-boundary sliding accommodated by the grain-boundary diffusion.  相似文献   

15.
《Ceramics International》2022,48(14):20126-20133
In this study, high-strength and wave-transmission silicon nitride (Si3N4) composites were successfully developed via selective laser sintering (SLS) with cold isostatic pressing (CIP) after debinding and before final sintering, and the optimal moulding process parameters for the SLS Si3N4 ceramics were determined. The effects of the sintering aids and secondary CIP on the bulk density, porosity, flexural strength, fracture toughness, and wave-transmitting properties of the Si3N4 composites were studied. The results showed that the increased CIP pressure was beneficial to the densification of SLS Si3N4 ceramics and improved their mechanical properties. However, the wave-transmitting performance decreased as the CIP pressure increased. The Si3N4 ceramics prepared by the moulding of sample S11 were more in line with the performance requirements of the radomes. To obtain good comprehensive performance, an additional 3% of interparticle Y2O3 was added to the pre-printed mixed powder of granulated Si3N4 particles and resin and the secondary CIP pressure was adjusted to 280 MPa. After sintering, the bending strength, fracture toughness, and dielectric constant of the Si3N4 ceramics were 651 MPa, 6.0 MPa m1/2, and 3.48 respectively. This study provides an important method for preparing of Si3N4 composite radomes using SLS process.  相似文献   

16.
碳化硅陶瓷的热等静压烧结   总被引:11,自引:3,他引:11  
系统地研究了不同添加剂(如Al2O3,AlN和B4C等)在热等静压(HIP)烧结条件下对SiC陶瓷之致密机理,显微结构以及力学性能的影响,结果表明:在HIP烧结过程中,Al2O3可以与SiC颗粒表面的SiO2生成低共熔的铝硅酸盐玻璃相,并有效地促进SiC陶瓷的致密化,当添加3%(以质量计)Al2O3时,采用HIP烧结工艺,在1850℃温度和200MPa压力下降结1h,就可获得相对密度和抗弯强度分别  相似文献   

17.
Hexagonal-shaped SiC nanowires were in situ formed in C/SiC composites with ferrocene as catalyst in the densification process of polymer impregnation and pyrolysis. The effect of SiC nanowires on microstructure and properties of the composites were studied. The results show that the in situ formed SiC nanowires were hexagonal, mostly with diamer of about 250 nm, and grew by the vapor–liquid–solid (VLS) mechanism. The C/SiC composite with nanowires shows higher bulk density and flexural strength than the one with no SiC nanowires, and the high temperature flexural strength behavior of C/SiC composites with SiC nanowires was evaluated.  相似文献   

18.
Traditionally, SiC components with complex shapes are very difficult or even impossible to fabricate. This paper aims to develop a new manufacturing process, combining selective laser sintering (SLS), cold isostatic pressing (CIP) and polymer infiltration pyrolysis (PIP), to manufacture complex silicon carbide parts and improve the mechanical properties of silicon carbide ceramic parts. The density and porosity of SiC/SiC composites were measured. Furthermore, the mechanical properties of the specimens with cold isostatic pressing and the specimens without cold isostatic pressing were compared. The bending strength of the specimens with cold isostatic pressing was 201?MPa, and the elastic modulus was 1.27?GPa. And, the bending strength of the specimens without cold isostatic pressing was 142?MPa, and the elastic modulus was 0.88?GPa. Increasing the density of SiC/SiC can enhance the mechanical properties of SiC/SiC composites.  相似文献   

19.
The development of advanced Tyranno SA SiC fiber with a near-stoichiometric composition and a well-crystallized microstructure has made it possible to prepare SiC/SiC composites even under harsh conditions. To assess the reinforcing effectiveness of Tyranno SA fiber at high temperature under pressure, unidirectional SiC/SiC composites were prepared by hot pressing, using pyrolytic carbon (PyC)-coated Tyranno SA fiber as a reinforcement and nanopowder SiC with sintering additives for matrix formation. The effects of sintering conditions on the microstructural evolution and mechanical properties of the composites were characterized. As the sintering temperature increased (from 1720° to 1780°C) and the sintering pressure increased (from 15 to 20 MPa), the density of the composites gradually increased. Simultaneously, the elastic modulus, the proportional limit stress, and the strength, under both bend and tensile tests, also improved. At lower temperature and/or pressure, long fiber pullout was a predominant fracture behavior, indicating relatively weak fiber/matrix bonding. However, at high temperature and/or pressure, short fiber pullout became a main fracture characteristic, indicating relatively strong fiber/matrix bonding. These phenomena were also confirmed by the characteristics of the hysteresis loops derived from the stress–strain curves produced by a tensile test with unloading–reloading cycles. In the present investigation, the reinforcement of Tyranno SA fiber is effective for providing noncatastrophic fracture behavior to composites.  相似文献   

20.
Ceria-doped tetragonal zirconia (Ce-TZP)/alumina (Al2O3) composites were fabricated by sintering at 1450° to 1600°C in air, followed by hot isostatic pressing (postsintering hot isostatic pressing) at 1450°C and 100 MPa in an 80 vol% Ar–20 vol% O2 gas atmosphere. Dispersion of Al2O3 particles into Ce-TZP was useful in increasing the relative density and suppressing the grain growth of Ce-TZP before hot isostatic pressing, but improvement of the fracture strength and fracture toughness was limited. Postsintering hot isostatic pressing was useful to densify Ce-TZP/Al2O3 composites without grain growth and to improve the fracture strength and thermal shock resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号