首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How to improve the strength of fibrous porous ceramics dramatically under the premise of no sacrificing its low density and thermal conductivity has remained a challenge in the high-temperature thermal insulation field. In this paper, a new kind of high-strength mullite fiber-based ceramics composed of interlocked porous mullite fibers was prepared by nanoemulsion electrospinning and dry pressing method. Results show that as to the porous ceramics with the same density (~ 0.8 g/cm3), the three-dimensional skeleton structure composed of porous mullite fibers was much denser than that composed of solid mullite fibers. Therefore, porous mullite fiber-based ceramics exhibited a higher compressive strength (5.53 MPa) than that of solid mullite fiber-based ceramics (3.21 MPa). In addition, porous mullite fiber-based ceramics exhibited a superior high-temperature heat insulation property because the porous structure in fibers could reduce the radiant heat conduction. This work provides new insight into the development of high-temperature thermal insulators.  相似文献   

2.
Inspired by bird's nest structure, fibrous mullite ceramic was fabricated by vacuum impregnation with mullite fibers as raw material and zirconia sol-gel as inorganic binder. The effect of impregnation times on the properties of the fibrous mullite ceramic, such as porosity, microstructure, compressive strength and room-temperature thermal conductivity were investigated. The results showed that low density (0.45–0.66?g/cm3), relative high compressive strength (0.62–3.34?MPa) and low thermal conductivity (0.037–0.125?W/mk) were exhibited for the sample. The toughness of fibrous mullite ceramic was enhanced due to the micro-creaks caused by transformation of zirconia. From the experimental results, it is suggested that it was an optimal method which have the potential use in high-temperature thermal insulation materials to produce fibrous mullite ceramics.  相似文献   

3.
《Ceramics International》2016,42(13):14843-14848
A novel fibrous porous mullite network with a quasi-layered microstructure was produced by a simple vacuum squeeze moulding technique. The effects of organic binder content, inorganic binder and adsorbent on the microstructure and the room-temperature thermal and mechanical properties of fibrous porous mullite ceramics were systematically investigated. An anisotropy microstructure without agglomeration and layering was achieved. The fibrous porous mullite ceramics reported in this study exhibited low density (0.40 g/cm3), low thermal conductivity (~0.095 W/(m K)), and high compressive strength (~2.1 MPa in the x/y direction). This study reports an optimal processing method for the production of fibrous porous ceramics, which have the potential for use as high-temperature thermal insulation material.  相似文献   

4.
Porous anorthite/mullite whisker ceramics with both high strength and low thermal conductivity have been successfully prepared by combining seed-assisted in situ synthesis and foam-freeze casting techniques. The addition of mullite seed was conducive to a reduction in the sintering shrinkage, pore size, and anorthite grain size. This increased the high aspect ratio of mullite whiskers, which enhanced the strength and diminished the thermal conductivity. Mullite whiskers overlapped to form a stable three-dimensional network structure similar to the bird's nest, which was also beneficial to heighten the mechanical properties of the prepared porous ceramics. Through this method, the prepared materials had a high apparent porosity of 87.7–90.2%, a low bulk density of 0.29–0.36 g/cm3, a high compressive strength of 0.65–3.31 MPa, and low thermal conductivity of 0.067–0.112 W/m·K. The results indicated that the method described here can fabricate porous ceramics with excellent properties for further thermal insulating applications.  相似文献   

5.
New gel system for preparing mullite porous ceramics by gel-casting freeze-drying was proposed, using pectin as gel source and alumina and silica as raw materials. Directional channels were formed due to sublimation of water during freeze-drying and decomposition of pectin during high temperature sintering to prepare porous mullite ceramic membranes. Effects of solid content on the properties of mullite ceramics in terms of phase composition, microstructure, apparent porosity, bulk density, pore size distribution, compressive strength, thermal conductivity, pressure drop, and gas permeability were investigated. It was found that prepared porous mullite possessed high apparent porosity (56.04%–75.34%), low bulk density (.77–1.37 g/cm3), uniform pore size distribution, relatively high compressive strength (.61–3.03 MPa), low thermal conductivity (.224–.329 W/(m·K)), high gas permeability coefficient (1.11 × 10−10–4.73 × 10−11 m2), and gas permeance (2.18 × 10−2–9.32 × 10−3 mol⋅m−2⋅s−1⋅Pa−1). These properties make prepared lightweight mullite ceramic membranes promising for application in high temperature flue gas filtration. Proposed gel system is expected to provide a new route to prepare porous ceramics with high porosity and directional channels.  相似文献   

6.
《Ceramics International》2017,43(7):5478-5483
Porous fibrous mullite ceramics with a narrow range of pore size distribution have been successfully prepared utilizing a near net-shape epoxy resin gel-casting process by using mullite fibers, Al2O3 and SiC as raw materials. The effects of sintering temperatures, different amounts of fibers and Y2O3 additive on the phase compositions, linear shrinkage, apparent porosity, bulk density, microstructure, compressive strength and thermal conductivity were investigated. The results indicated that mullite-bonded among fibers were formed in the porous fibrous mullite ceramics with a bird nest pore structure. After determining the sintering temperatures and the amount of fibers, the tailored porous fibrous mullite ceramics had a low linear shrinkage (1.36–3.08%), a high apparent porosity (61.1–71.7%), a relatively high compressive strength (4.4–7.6 MPa), a low thermal conductivity (0.378–0.467 W/m K) and a narrow range of pore size distribution (around 5 µm). The excellent properties will enable the porous ceramics as a promising candidate for the applications of hot gas filters, thermal insulation materials at high temperatures.  相似文献   

7.
Porous mullite ceramics were fabricated from an industrial grade mullite powder by gelcasting process using fly ash cenospheres (FAC) as a pore‐forming agent. The influence of content of FAC and sintering temperature on the density and strength was evaluated. The microstructure showed that FAC can act as a sintering aid and a pore‐forming agent. When the sintering temperature at 1200°C, porous mullite ceramics with a relatively high porosity (48.1–72.2%), low density (0.84–1.64 g/cm3), low thermal conductivity (0.16–0.22 W/m · K), and high compressive strength (6.21–14.70 MPa) have been obtained.  相似文献   

8.
《Ceramics International》2019,45(15):18865-18870
Near-net-shape mullite ceramics with high porosity were prepared from ultra-low cost natural aluminosilicate mineral kaolin as raw material and polystyrene micro-sphere (PS) as pore-forming agent. Microstructure, flexural strength, thermal conductivity and dielectric properties of the ceramics were systematically researched. Results show that the porous mullite ceramics possess fibrous skeleton structure formed by a large quantity of interlocked mullite whiskers, which results in good mechanical properties and low-to-zero sintering shrinkage. Flexural strength of the porous mullite ceramics can be up to 41.01 ± 1.12 MPa, even if the porosity is as high as 62.44%. The dielectric constant and loss tangent of the porous mullite ceramics at room temperature are lower than 2.61 and 5.9 × 10−3, respectively. Besides, dielectric constant is very stable with the rising of temperature, and the dielectric loss can be consistently lower than 10−2 when the temperature is not higher than 800 °C. In addition, thermal conductivity at room temperature is as low as 0.163 W/m/K when the porosity of mullite ceramics is 80.05%. The infiltration of SiO2 aerogels (SiO2 AGs) can further decrease the thermal conductivity to 0.075 W/m/K, while has just little effects on the dielectric properties. Excellent mechanical, thermal and dielectric properties show that the porous mullite ceramics have potential applications in radome fields. The porous mullite ceramics prepared from kaolin not only have low cost, but also can achieve near-net-shape.  相似文献   

9.
Hierarchical structured porous ceramics have attracted tremendous research interests because of their numerous excellent properties including robust mechanical strength and large surface area. In this work, silicon carbide (SiC)-based porous ceramics with three levels of pore hierarchy are fabricated from silicon particle-stabilized foams and a subsequent one-step calcination after they were embedded with coke. Three-dimensional (3D) flexible nanofibrous network is adhered and wrapped on cell walls of porous ceramics, which is readily fine-tuned and tailored by the temperature to provide optimized pore structure. The resultant SiC-based porous ceramics present a density of 1.03 g/cm3 at a porosity of 72% with a large quantity of hierarchical micro- and macropores. This hierarchical structure leads to robust compressive strength (23.52 MPa) and large surface area (64.32 m2/g). The fabrication method is straightforward and sought-after, providing a facile technical route for advanced hierarchical porous ceramics used in filtration and catalysis fields.  相似文献   

10.
《Ceramics International》2023,49(1):847-854
Mullite fiber-based porous ceramics have been widely used in the field of heat insulation. To further broaden their applications in other fields, such as filtration and sound absorption, mullite whiskers and alumina platelets were introduced as the secondary structural materials in mullite fiber-based porous ceramics by a sol-gel combining heat-treating method, and new fiber-based porous ceramics with a unique multilevel pore structure were developed. By adjusting the molar ratios of aluminium tri-sec-butoxide to aluminium fluoride and calcination temperature, these fiber-based porous ceramics not only presented the characteristics of lightweight (maximum density of 0.38 g/cm3) and good heat insulation (minimum thermal conductivity of 0.11 W/mK) comparable to traditional fiber-based porous ceramics, but also showed a superior specific surface area (up to 11.5 g/m2) and excellent sound absorption performance (average sound absorption coefficient as high as 0.728). Owing to these outstanding characteristics, the corresponding porous ceramics are expected to be promising multifunctional materials in diverse fields, especially thermal insulation and sound absorption.  相似文献   

11.
《Ceramics International》2017,43(18):16430-16435
For recycling waste refractory materials in metallurgical industry, porous alumina ceramics were prepared via pore forming agent method from α-Al2O3 powder and slide plate renewable material. Effects of slide plate renewable material (SPRM) on densification, mechanical strength, thermal conductivity, phase composition and microstructure of the porous alumina ceramics were investigated. The results showed that SPRM effectively affected physical and thermal properties of the porous ceramics. With the increase of SPRM, apparent porosity of the ceramic materials firstly increased and then decreased, which brought an opposite change for the bulk density and thermal conductivity values, whereas the bending strength didn’t decrease obviously. The optimum sample A2 with 50 wt% SPRM introducing sintered at 1500 °C obtained the best properties. The water absorption, apparent porosity, bulk density, bending strength and thermal conductivity of the sample were 31.7%, 62.8%, 1.71 g/cm3, 47.1 ± 3.7 MPa and 1.73 W/m K, respectively. XRD analysis indicated that a small quantity of silicon carbide and graphite in SPRM have been oxidized to SiO2 during the firing process, resulting in rising the porous microstructures. SEM micrographs illustrated that rod-like mullite grains combined with plate-like corundum grains to endow the samples with high bending strength. This study was intended to confirm the preparation of porous alumina ceramics with high porosity, good mechanical properties and low thermal conductivity by using SPRM as pore forming additive.  相似文献   

12.
The porous anorthite ceramics with high porosity, good mechanical strength and low heat conductivity were prepared using red mud and fly ash as raw materials via the pore forming method. The effects of sintering temperature and fly ash on phase evolution, densification, compressive strength, thermal conductivity and microstructure of the ceramic materials were investigated. The results showed that the compressive strength of the porous ceramics had an obvious improvement with the increase in fly ash, and the densification and heat conductivity decreased firstly and then increased. In particular, specimen S2 containing 30 wt% red mud and 40 wt% fly ash sintered at 1150°C had the better performances. It had the water absorption of 18.18%, open porosity of 38.52%, bulk density of 1.29 g/cm3, compressive strength of 42.46 MPa, and heat conductivity of 1.24 W/m·K. X-ray diffraction analysis indicated that mullite, anorthite, α-quartz, and diopside ferrian were the dominant phases in the specimens. Scanning electron microscopy micrographs illustrated that plenty of open pores with strip shape and closed pores with axiolitic shape existed in the specimens. Furthermore, the existence of mullite could prevent crack propagation to enhance the energy of inter-granular fracture. It endowed the porous anorthite ceramics with high porosity, good compressive strength, and low heat conductivity.  相似文献   

13.
Mullite fiber was used to fabricate ZrO2-mullite based porous ceramic via tert-butyl alcohol (TBA)-based gel-casting process using zirconite and bauxite as raw materials. Phase compositions, microstructure, pore size distribution, linear shrinkage, bulk density, apparent porosity, thermal conductivity, and compressive strength were analyzed to investigate influences of mullite fiber content and added Y2O3 on prepared porous ceramics. Results show that bird nest-like three-dimensional fibrous reticular skeleton structure was constructed with mullite fibers that evenly enwrapped rod-like mullite and ZrO2 grains. Prepared porous fibrous ZrO2-mullite ceramics had narrow pore size distribution that consisted of mullite and m-ZrO2. With an increase in mullite fiber content, linear shrinkage and bulk density decreased, apparent porosity increased, and relatively good thermal conductivity was obtained. In addition, added Y2O3 reacted with Al2O3 and SiO2 to form Y-Al-Si-O glass phase, which promoted sintering and densification of the ceramic, thus improving its compressive strength.  相似文献   

14.
In this paper, spodumene/mullite ceramics with good thermal shock resistance were prepared from spodumene, quartz, talc, and clay when the sintering temperature was 1270℃. In the sintering process, the effect of holding time on densification, mechanical properties, phase transformation, microstructure, and thermal shock resistance of the composite ceramics were investigated. The phase transition and microstructures of the ceramics were identified via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The interaction between holding time and bulk density was studied by response surface methodology. The result show that an appropriate holding time can improve the mechanical properties of spodumene/mullite ceramics. When the holding time was kept 90 min, the spodumene/mullite ceramics with the apparent porosity was .47%, the bulk density was 2.28 g/cm3, and bending strength was 63.46 MPa. Furthermore, since no cracks formed after 20 thermal shock cycles for the composite ceramics with a bending strength decreasing rate of 12.66%, it is revealed that spodumene/mullite ceramics exhibit good thermal shock resistance. Therefore, this study can provide beneficial guidance for both industrial production and energy conservation.  相似文献   

15.
For lowering sintering temperature of mullite/Al2O3 composite ceramics for solar thermal transmission pipeline, kaolin, potassium feldspar, quartz, and γ‐Al2O3 were used as raw materials to in situ synthesize the composite ceramics with pressureless sintering method. Densification, mechanical properties, thermal expansion coefficient, thermal shock resistance, phase composition, and microstructure were investigated. The experiment results demonstrated that the introduction of potassium feldspar and quartz decreased the lowest sintering temperatures greatly to 1300°C. The optimum sample A3 sintered at 1340°C obtained the best performances. The water absorption, apparent porosity, bulk density, bending strength, and thermal expansion coefficient of A3 were 0.04%, 0.12%, 2.71 g/cm3, 94.82 MPa, and 5.83 × 10?6/°C, respectively. After 30 thermal shock cycles (wind cooling from 1100°C to room temperature), no cracks were observed on the surfaces of the sample, and the bending strength increased by ?7.96%. XRD analysis indicated that the main phases of samples before and after 30 thermal shock cycles were consistently mullite, corundum, and α‐cristobalite, while the content of mullite increased after thermal shock. SEM micrographs illustrated that the mullite grains growth and micro‐cracks appeared after thermal shock endowed the composite ceramics with excellent thermal shock resistance.  相似文献   

16.
In order to meet the demand for thermal insulation and sound absorption, fibrous porous mullite ceramics (FPMC) with high porosity and an interconnected pore structure were prepared, followed by a pore structure modification with in situ grown mullite whiskers on the three-dimensional framework of the FPMC. The resultant hierarchical material exhibited superior sound absorption performance in the low-to-medium frequency to most reported sound-absorbing materials, as well as a sufficient compressive strength of 1.26 MPa with low thermal conductivity of 0.117 W·m?1·K?1. Moreover, the effects of solid content and mullite whiskers on the microstructure and physical properties of the material were analyzed. The increase of solid content led to increased compressive strength and thermal conductivity and decreased frequency corresponding to the first sound absorption peak. The thermal conductivity and compressive strength of the material increased as the mullite whiskers grew, while the median pore size decreased.  相似文献   

17.
Nano-whiskers based 3D Si3N4 porous ceramics (3D-NWSNPC) with high-porosity (about 91–93 %), low density (0.17–0.25 g/cm3), low thermal conductivity, and a certain degree of recoverability under cyclic compressive loading and reasonably strengths were prepared at 1423–1523 K via a one-pot foam-gelcasting/nitridation route using inexpensive commercial Si powders as starting materials and hexadecyl trimethyl ammonium bromide as foaming agent. After nitridation at 1523 K, the sample with an original solid loading of 12.5 wt% exhibited the highest compressive strength of 1.9 MPa, even though its density was lowered to 0.25 g/cm3. The sample nitrided at 1473 K had a relative density of 7.3 %. Its compressive and specific strength were respectively 1.1 MPa and 5.5 MPa·cm3 g?1, and its thermal conductivity was as low as 0.074 W/(m K) (measured at 323 K). These outstanding properties would make the as-prepared 3D-NWSNPC a promising candidate for applications in catalysis, filtration, thermal insulation and many other important areas.  相似文献   

18.
《Ceramics International》2016,42(11):13161-13167
The method of in situ synthesis of mullite whiskers by gas-phase deposition and reaction was applied to improve the compressive strength of the mullite fiber brick. During the preparation process, silica sol, Al(NO3)3 solution and NH4F solution were introduced into the fibrous brick in the form of ions or sol through vacuum impregnation and freeze drying, and the silica sol, Al(NO3)3 and NH4F served as the silica sources, aluminum source and catalyst, respectively. Effects of process parameters (concentration of impregnation solutions, holding time, sintering temperature) on compressive strength and elastic modulus of the fibrous brick during the in situ toughening process were analyzed. SEM and XRD analysis results demonstrated that the mullite whiskers were synthesized on the surface of mullite fibers based on the reaction of AlOF and SiF4. What is more, the whiskers on adjacent fibers intersected with each other and formed many unfixed lap-jointing points, resulting in the increase of compressive strength and elastic modulus. Although the density and thermal conductivity of the sample after the generation of mullite whiskers fabricated with the optimum process were 0.406 g/cm3 and 0.1262 W/(m K), respectively, which were slightly higher than that of the raw fibrous brick (0.375 g/cm3 density and 0.1069 W/(m K) thermal conductivity, respectively), the corresponding compressive strength and elastic modulus of the sample reinforced with the whiskers increased to 1.45 MPa and 42.03 MPa, respectively, which were much higher than that of the raw fibrous brick (0.39 MPa compressive strength and 6.5 MPa elastic modulus).  相似文献   

19.
《Ceramics International》2022,48(20):30356-30366
Calcium hexaluminate (CA6) porous ceramics were prepared by gel-casting method, with α-Al2O3 and CaCO3 as raw materials and polymethyl methacrylate (PMMA) microspheres as pore-forming agent. The effects of the amount of pore-forming agent PMMA microspheres on the phase composition, bulk density, apparent porosity, flexural strength, microstructure, thermal shock stability and thermal conductivity of CA6 porous ceramics were systematically studied. The pores of CA6 porous ceramics are mainly formed by the burning loss of PMMA microspheres and the decomposition of organic matter. Adding an appropriate amount of PMMA microspheres as pore-forming agent has a positive effect on the thermal shock stability of CA6 porous ceramics. When the amount of pore-forming agent is 15 wt%, the volume density of CA6 porous ceramics is 1.33 g/cm3, the porosity is 63%, the flexural strength is 13.9 MPa, the thermal shock times can reach 9 times, and the thermal conductivity is 0.293 W/(m·K), which can meet the application in refractory, ceramics or high temperature cement industries.  相似文献   

20.
《Ceramics International》2022,48(3):3578-3584
Porous mullite ceramics are potential advanced thermal insulating materials. Pore structure and purity are the main factors that affect properties of these ceramics. In this study, high performance porous mullite ceramics were prepared via aqueous gel-casting using mullite fibers and kaolin as the raw materials and ρ-Al2O3 as the gelling agent. Effects of addition of mullite fibers on the pore structure and properties were examined. The results indicated that mullite phase in situ formed by kaolin, and ρ-Al2O3 ensured the purity of mullite samples and mullite fibers bonded together to form a nest-like structure, greatly improving the properties of ceramic samples. In particular, the apparent porosity of mullite samples reached 73.6%. In the presence of 75% of mullite fibers, the thermal conductivity was only 0.289 W/m K at room temperature. Moreover, the mullite samples possessed relatively high cold compressive strength in the range of 4.9–9.6 MPa. Therefore, porous mullite ceramics prepared via aqueous gel-casting could be used for wide applications in thermal insulation materials, attributing to the excellent properties such as high cold compressive strength and low thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号