首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B4C-TiB2 composites were contaminated with WC to study the effect on densification, microstructure and properties. WC was introduced through a mild or a high energy milling with WC-6?wt%Co spheres or directly as sintering aid to 50?vol% B4C / 50?vol%TiB2 mixtures. High energy milling was very effective in improving the densification thanks to the synergistic action of WC impurities, acting as sintering aid, and size reduction of the starting TiB2-B4C powders. As a result, the sintering temperature necessary for full densification decreased to 1860?°C and both strength and hardness benefited from the microstructure refinement, 860?±?40 MPa and 28.5?±?1.4?GPa respectively. High energy milling was then adopted for producing 75?vol% B4C/25?vol% TiB2 and 25?vol% B4C/ 75vol%TiB2 mixtures. The B4C-rich composition showed the highest hardness, 32.2?±?1.8?GPa, whilst the TiB2-rich composition showed the highest value of toughness, 5.1?±?0.1?MPa?m0.5.  相似文献   

2.
Almost fully-dense B4C–SiC–TiB2 composites with a high combination of strength and toughness were prepared through in situ reactive spark plasma sintering using B4C and TiSi2 as raw materials. The densification, microstructure, mechanical properties, reaction, and toughening mechanisms were explored. TiSi2 was confirmed as a reactive sintering additive to promote densification via transient liquid-phase sintering. Specifically, Si formed via the reaction between B4C and TiSi2 that served as a transient component contributed to densification when it melted and then reacted with C to yield more SiC. Toughening mechanisms, including crack deflection, branching and bridging, could be observed due to the residual stresses induced by the thermoelastic mismatches. Particularly, the introduced SiC–TiB2 agglomerates composed of interlocked SiC and TiB2 played a critical role in improving toughness. Accordingly, the B4C–SiC–TiB2 composite created with B4C-16 wt% TiSi2 achieved excellent mechanical performance, containing a Vickers hardness of 33.5 GPa, a flexural strength of 608.7 MPa and a fracture toughness of 6.43 MPa m1/2.  相似文献   

3.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   

4.
The B4C-diamond composite with high hardness and toughness was first prepared by high-pressure sintering of B4C and diamond powders at 5 GPa and 1600 °C. The effect of the diamond fraction on the densification, microstructure and mechanical properties of B4C-diamond composite were investigated. The results indicated that the hardness of the as-prepared composite ceramics increased gradually with the increase in diamond content. The composite having 40 vol% diamond exhibited excellent comprehensive mechanical properties with a relative density of 98.3%, a density of 2.86 g/cm3, Vickers hardness of 39.8 GPa and fracture toughness of 8.1 MPa·m1/2. The use of superhard diamond enhanced the fracture toughness of the B4C while maintaining its lightweight and high hardness. The main toughening mechanisms were crack bridging, crack deflection and pull-out of homogeneously dispersed diamond grains. Superhard second phase dispersion high-pressure sintering provides a new technical route to improve the properties of advanced composites.  相似文献   

5.
B4C‒15 vol% TiB2 composites were fabricated by in situ reactive spark plasma sintering with B4C, TiC, and amorphous B powders as the raw materials. The size coupling of initial B4C and TiC particles was optimized based on the reaction mechanism to derive B4C‒TiB2 composites with enhanced microstructure and properties. During the reactive sintering, fine B4C–TiB2 particles were firstly formed by an in situ reaction between TiC and B. Then, large B4C particles tended to grow at the cost of small B4C particles. The in situ TiB2 grains gradually grew up and interconnect, distributing around the large B4C grains to form an intergranular TiB2 network. The results showed that the B4C‒15 vol% TiB2 composite prepared from 3.12 μm B4C powder and 0.80 μm TiC powder had the optimal comprehensive properties, with a relative density of 99.50%, a Vickers hardness of 31.84 GPa, a flexural strength of 780 MPa, a fracture toughness of 5.77 MPa·m1/2, as well as an electrical resistivity of 3.01 × 10−2 Ω·cm.  相似文献   

6.
《Ceramics International》2016,42(6):7347-7352
MAX phase Ti3AlC2 was chosen as a novel sintering aid to prepare electrically conductive B4C composites with high strength and toughness. Dense B4C composites can be obtained at a hot-pressing temperature as low as 1850 °C with 15 vol% Ti3AlC2. The enhanced sinterability was mainly ascribed to the in situ reactions between B4C and Ti3AlC2 as well as the liquid phase decomposed from Ti3AlC2. Both the Vickers hardness and fracture toughness increase with increasing Ti3AlC2 amount, and high hardness and toughness values of 28.5 GPa and 7.02 MPa m−1/2 respectively were achieved for B4C composites sintered with 20 vol% Ti3AlC2 at 1900 °C. Crack deflection by homogenously distributed TiB2 particles was identified as the main toughening mechanism. Besides, B4C composites sintered with Ti3AlC2 show significantly improved electrical conductivity due to the percolation of highly conductive TiB2 phase, which could enhance the machinability of B4C composites largely by allowing electrical discharge machining.  相似文献   

7.
《Ceramics International》2022,48(9):12006-12013
B4C-based composites were synthesized by spark plasma sintering using B4C、Ti3SiC2、Si as starting materials. The effects of sintering temperature and second phase content on mechanical performance and microstructure of composites were studied. Full dense B4C-based composites were obtained at a low sintering temperature of 1800 °C. The B4C-based composite with 10 wt% (TiB2+SiC) shows excellent mechanical properties: the Vickers hardness, fracture toughness, and flexural strength are 33 GPa, 8 MPa m1/2, 569 MPa, respectively. High hardness and flexural strength were attributed to the high relative density and grain refinement, the high fracture toughness was owing to the crack deflection and uniform distribution of the second phase.  相似文献   

8.
Three phase boride and carbide ceramics were found to have remarkably high hardness values. Six different compositions were produced by hot pressing ternary mixtures of Group IVB transition metal diborides, SiC, and B4C. Vickers’ hardness at 9.8 N was ~31 GPa for a ceramic containing 70 vol% TiB2, 15 vol% SiC, and 15 vol% B4C, increasing to ~33 GPa for a ceramic containing equal volume fractions of the three constituents. Hardness values for the ceramics containing ZrB2 and HfB2 were ~30% and 20% lower than the corresponding TiB2 containing ceramics, respectively. Hardness values also increased as indentation load decreased due to the indentation size effect. At an indentation load of 0.49 N, the hardness of the previously reported ceramic containing equal volume fractions of TiB2, SiC and B4C was ~54 GPa, the highest of the ceramics in the present study and higher than the hardness values reported for so-called “superhard” ceramics at comparable indentation loads. The previously reported ceramic containing 70 vol% TiB2, 15 vol% SiC, and 15 vol% B4C also displayed the highest flexural strength of ~1.3 GPa and fracture toughness of 5.7 MPa·m1/2, decreasing to ~0.9 GPa and 4.5 MPa·m1/2 for a ceramic containing equal volume fractions of the constituents.  相似文献   

9.
Spark plasma sintering (SPS) is an advanced sintering technique because of its fast sintering speed and short dwelling time. In this study, TiB2, Y2O3, Al2O3, and different contents of B4C were used as the raw materials to synthesize TiB2-B4C composites ceramics at 1850°C under a uniaxial loading of 48 MPa for 10 min via SPS in vacuum. The influence of different B4C content on the microstructure and mechanical properties of TiB2-B4C composites ceramics are explored. The experimental results show that TiB2-B4C composite ceramic achieves relatively good comprehensive properties and exceptionally excellent flexural strength when the addition amount of B4C reaches 10 wt.%. Its relative density, Vickers hardness, fracture toughness, and flexural strength reach to 99.20%, 24.65 ± .66 GPa, 3.16 MPa·m1/2, 730.65 ± 74.11 MPa, respectively.  相似文献   

10.
《Ceramics International》2022,48(9):11981-11987
Previous research have reported that B4C–TiB2 composites could be prepared by the reactive sintering of TiC–B powder mixtures. However, due to spontaneous oxidation of raw powders, using TiC–B powder mixtures with a B/TiC molar ratio of 6: 1 introduced an intermediate phase of C during the sintering process, which deteriorated the hardness of the composites. In this report, the effects of B excess on the phase composition, microstructure, and mechanical properties of B4C–TiB2 composites fabricated by reactive hot pressing TiC–B powder mixtures were investigated. XRD and Raman spectra confirmed that lattice expansion occurred in B-rich boron carbide and BxC–TiB2 (x > 4) composites were obtained. The increasing B content improved the hardness and fracture toughness but decreased the flexural strength of BxC–TiB2 (x > 4) composites. When the molar ratio of B/TiC increased from 6.6:1 to 7.8:1, the Vickers hardness and the fracture toughness of the composites were enhanced from 26.7 GPa and 4.53 MPa m1/2 to 30.4 GPa and 5.78 MPa m1/2, respectively. The improved hardness was attributed to the microstructural improvement, while the toughening mechanism was crack deflection, crack bridging and crack branching.  相似文献   

11.
Square-shaped monolithic B4C and B4C-ZrB2 composites were produced by spark plasma sintering (SPS) method to investigate the effect of 5, 10, 15 vol% ZrB2 addition on the densification, mechanical and microstructural properties of boron carbide. The relative density of B4C increased with the increasing volume fraction of ZrB2 and density differences in different regions of the sample narrowed down. Homogeneous density distribution and microstructure were accomplished with the increasing holding time from 7 to 20 min for the B4C-15 vol% ZrB2 composites, and the highest overall relative density was achieved as 99.23%. The hardness and fracture toughness of composites were enhanced with the addition of ZrB2 compared to monolithic B4C. The enhancement in fracture toughness was observed due to the crack deflection, crack bridging and crack branching mechanisms. The B4C-15 vol% ZrB2 composite exhibited the combination of superior properties (hardness of 33.08 GPa, Vickers indentation fracture toughness of 3.82 MPa.m1/2).  相似文献   

12.
A kind of B4C/SiC composite ceramic toughened by graphene platelets and Al was fabricated by spark plasma sintering. The effects of graphene platelets and Al on densification, microstructure and mechanical properties were studied. The sintering temperature was decreased about 125–300?°C with the addition of 3–10?wt% Al. Al can also improve fracture toughness but decrease hardness. The B4C/SiC composite ceramic with 3?wt%Al and 1.5?wt% graphene platelets sintered at 1825?°C for 5?min had the optimal performances. It was fully densified, and the Vickers hardness and fracture toughness were 30.09?±?0.39?GPa and 5.88?±?0.49?MPa?m1/2, respectively. The fracture toughness was 25.6% higher than that of the composite without graphene platelets. The toughening mechanism of graphene platelets was also studied. Pulling-out of graphene platelets, crack deflection, bridging and branching contributed to the toughness enhancement of the B4C-based ceramic.  相似文献   

13.
B4C composites with 15 and 30 vol% TiB2 were pulsed electric current sintered from B4C-TiO2-carbon black mixtures in vacuum at 2000 °C. Full densification could be realised when applying an optimized loading cycle in which the maximum load is applied after completion of the B4C-TiB2 powder synthesis, allowing degassing of volatile species. The influence of the sintering temperature on the phase constitution and microstructure during synthesis and densification was assessed from interrupted sintering cycles. The in situ conversion of TiO2 to TiB2 was a complex process in which TiO2 is initially converted to TiB2 with B2O3 as intermediate product at 1400-1700 °C. At 1900-2000 °C, B2O3 reacted with C forming B4C and CO. The B4C and TiB2 grain size in the fully densified 30 vol% TiB2 composite was 0.97 and 0.63 μm, combining a Vickers hardness of 39.3 GPa, an excellent flexural strength of 865 MPa, and modest fracture toughness of 3.0 MPa m1/2.  相似文献   

14.
《Ceramics International》2021,47(22):31214-31221
Laminated B4C–TiB2 ceramics with h-BN interface layers were successfully prepared by roll forming and tape casting, and samples with different numbers of stacked layers were obtained. Scanning electron microscopy and X-ray diffraction were used to analyze the microstructure and interlayer crystal phases of the composites, and the bending strength, fracture toughness, and work of fracture were measured. As the number of h-BN layers increased, the fracture toughness increased from 7.38 ± 0.5 MPa m1/2 to 9.01 ± 0.61 MPa m1/2, which is 2–3 times higher than that of monolithic B4C ceramics. As the fracture toughness increased, the hardness remained at a high level (31.67 GPa). Bending tests showed that cracks deflected when they encountered the h-BN interfacial layers. The toughening mechanisms included the deflection and branching of cracks and generation of new microcracks, which increased the length of the propagation path and work of fracture.  相似文献   

15.
Tough and hard ultrafine-grained B4C-cBN composites were firstly fabricated by high-pressure sintering mixed B4C and cBN nanopowders at 6 GPa and 1700 °C. The phase transition from cBN to hBN is avoided by high pressure during the sintering process. The effects of the cBN content on the densification and mechanical properties of B4C-cBN composites were evaluated. The results indicated that the hardness of the as-fabricated composites increased gradually with the increase of cBN content. The composite composed of 50 wt.% cBN exhibited excellent comprehensive mechanical properties with relative density of 98.6 %, density of 2.9 g/cm3, Vickers hardness of 36.2 GPa and fracture toughness of 6.7 MPa·m1/2. The introduction of superhard cBN maintained the lightweight and high hardness while enhancing the fracture toughness of the B4C. The main toughening mechanisms were crack bridging, crack deflection and pull-out of homogeneously dispersed cBN grains.  相似文献   

16.
High electrical resistance and low fracture toughness of B4C ceramics are 2 of the primary challenges for further machining of B4C ceramics. This report illustrates that these 2 challenges can be overcome simultaneously using core‐shell B4C‐TiB2&TiC powder composites, which were prepared by molten‐salt method using B4C (10 ± 0.6 μm) and Ti powders as raw materials without co‐ball milling. Finally, the near completely dense (98%) B4C‐TiB2 interlayer ceramic composites were successfully fabricated by subsequent pulsed electric current sintering (PECS). The uniform conductive coating on the surface of B4C particles improved the mass transport by electro‐migration in PECS and thus enhanced the sinterability of the composites at a comparatively low temperature of 1700°C. The mechanical, electrical and thermal properties of the ceramic composites were investigated. The interconnected conductive TiB2 phase at the grain boundary of B4C significantly improved the properties of B4C‐TiB2 ceramic composites: in the case of B4C‐29.8 vol% TiB2 composite, the fracture toughness of 4.38 MPa·m1/2, the electrical conductivity of 4.06 × 105 S/m, and a high thermal conductivity of 33 W/mK were achieved.  相似文献   

17.
Dense and light B4C–(Ti0.9Cr0.1)B2 composites with excellent mechanical properties were designed and reactively densified from boron, TiC, and Cr3C2 powder mixtures by spark plasma sintering in this work. Due to solid solution effects, the as-obtained B4C–(Ti0.9Cr0.1)B2 composite exhibited obviously enhanced hardness (43.2 ± 3.0 GPa at 9.8 N) and higher specific hardness (12.82 GPa cm3 g−1) together with improved flexural strength (663 ± 39 MPa) and fracture toughness (KIC, 5.40 ± 0.25 MPa m1/2), compared to the counterparts such as B4C–TiB2 composite and B4C. Toughening contributions in the as-sintered ceramics were quantitatively analyzed, and higher KIC in B4C–(Ti0.9Cr0.1)B2 was mainly due to their larger initial fracture toughness and compressive stress toughening. The combination of these properties makes B4C–(Ti0.9Cr0.1)B2 composites exhibit great potentials in the application as lightweight structural materials. This work provided an inspiration to achieve lightweight materials with high performance through doping minor-amount atoms into the matrix.  相似文献   

18.
Boron carbide (B4C) ceramic composites with excellent mechanical properties were fabricated by hot-pressing using B4C, silicon carbide (SiC), titanium boride (TiB2), and magnesium aluminum silicate (MAS) as raw materials. The influences of SiC and TiB2 content on the microstructural evolution and mechanical properties of the composites were systematically investigated. The mechanism by which MAS promotes the sintering process of composites was also investigated. MAS exists in composites in the form of amorphous phase. It can effectively remove the oxide layer from the surface of ceramic particles during the high temperature sintering process. The typical values of relative density, hardness, bending strength, and fracture toughness of B4C–SiC–TiB2 composites are 99.6%, 32.61 GPa, 434 MPa, and 6.20 MPa m1/2, respectively. Based on the microstructure observations and finite element modeling, the operative toughening mechanism is mainly attributed to the crack deflection along the grain boundary, which results from the residual stress field generated by the thermal expansion mismatch between B4C and TiB2 phase.  相似文献   

19.
Strip‐shaped W2B5 reinforced B4C ceramic composites were prepared via in situ reaction of boron(B)‐graphite(Gr)‐WC system by powder metallurgy (P/M). In order to study the effect of the graphite content on the properties of the as‐fabricated ceramic composites, the powder mixture of B‐Gr‐WC with various amounts of Gr powder were blended and consolidated by spark plasma sintering (SPS). The sintering parameters were shown as following: sintering pressure was set as 30 MPa; The three‐step sintering temperature was 1100‐1550‐1700°C and the duration time was set as 5‐5‐6 minutes, respectively. In situ formed strip‐shaped W2B5 particles were dispersed homogeneously in B4C matrix, which resulted in a remarkable improvement on the fracture toughness and mechanical properties. Appropriate 5vol% residual Gr in the composite shows positive effect on the mechanical properties which achieved an optimal counter‐balance of fracture toughness and hardness, the relative density was 99.8%, the Vickers hardness can reach 30.2 GPa, and the fracture toughness was 11.9 MPa·m1/2 when the sintering temperature was set at 1700°C.  相似文献   

20.
SiC–TiB2 composites with up to 50 vol% TiB2 were fabricated by in-situ reaction between TiO2, B4C and C. The densification of the uniaxially pressed samples was done using pressureless sintering in the presence of sintering aids consisting of Al2O3 and Y2O3. The influence of the volume fraction of TiB2 and sintering temperature on density and fracture toughness was examined. It was found that fracture toughness is strongly affected by the volume fraction of TiB2. The presence of TiB2 particles suppresses the grain growth of SiC and facilitates different toughening mechanisms to operate which, in turn, increases fracture toughness of the composite. The highest value for fracture toughness of 5.7 MPa m1/2 was measured in samples with 30 vol% TiB2 sintered at 1940 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号