首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 345 毫秒
1.
《应用陶瓷进展》2013,112(5):308-312
ZrB2 based composites containing 10 vol.-% carbon nanotubes (CNTs) are synthesised by spark plasma sintering at temperatures ranging from 1600 to 18008C and at an applied pressure of 25?MPa. The effects of sintering temperature on densification behaviour, microstructural evolutions and mechanical properties are presented. Results indicate that ZrB2-CNT composites fabricated at 16508C have the optimal combination of dense microstructure and properties. The fracture toughness is sensitive to the temperature change and reaches 7.2?MPa m1/2 for the CNT toughened ZrB2 ceramics, which is higher than the measured result for monolithic ZrB2 (3.3?MPa m1/2). The crack deflection and CNT pullout are the dominant toughening mechanisms.  相似文献   

2.
Densification behavior, microstructure, and mechanical properties of zirconium diboride (ZrB2) ceramics modified with a complex Zr/Si/O-based additive were studied. ZrB2 ceramics with 5–20 vol.% additions of Zr/Si/O-based additive were densified to >95% relative density at temperatures as low as 1400°C by hot-pressing. Improved densification behavior of ZrB2 was observed with increasing additive content. The most effective additive amount for densification was 20 vol.%, hot-pressed at 1400°C (∼98% relative density). Microstructural analysis revealed up to 7 vol.% of residual second phases in the final ceramics. Improved densification behavior was attributed to ductility of the silicide phase, liquid phase formation at the hot-pressing temperatures, silicon wetting of ZrB2 particles, and reactions of surface oxides. Room temperature strength ranged from 390 to 750 MPa and elastic modulus ranged from 440 to 490 GPa. Vickers hardness ranged from 15 to 16 GPa, and indentation fracture toughness was between 4.0 and 4.3 MPa·m1/2. The most effective additive amount was 7.5 vol.%, which resulted in high relative density after hot-pressing at 1600°C and the best combination of mechanical properties.  相似文献   

3.
ZrB2-ZrCx composites were produced using Zr:B4C powder mixtures in the molar ratios of 3:1, 3.5:1, 4:1, and 5:1 by reactive hot pressing (RHP) at 4-7 MPa, 1200°C for 60 minutes. X-ray diffraction analyses confirmed the formation of nonstoichiometric zirconium carbide (ZrCx) with different lattice parameters and enhanced carbide formation by increasing the Zr mole fraction. An increase in applied pressure from 4 to 7 MPa was responsible for the improved relative density (RD) of 4Zr:B4C composition from 86% to 99%. Microstructural studies on Zr-rich composites showed a reduction in unreacted B4C particles and enriched elongated ZrB2 platelets. Reaction and densification mechanism in 4Zr:B4C composition were studied as a function of temperature increased from 600 to 1200°C at an applied constant pressure of 7 MPa. After 1000°C, <40 vol.% of unreacted Zr was observed during the densification process. Concurrently, low energies of carbon diffusion and carbon vacancy formation were found to enhance nonstoichiometric ZrCx formation, which was found to be responsible for the completion of the reaction. The plastic deformation of unreacted Zr was responsible for the densification of the ZrB2-ZrCx composite. The results clearly showed that the applied pressure is five times lower than the reported values. Moreover, a temperature of 1200°C was sufficient to produce dense ZrB2-ZrCx composites. The improved microhardness, flexural strength, fracture toughness, and specific wear rate were 8.2-15 GPa, 265-590 MPa, 2.82-6.33 MPa.m1/2, and 1.43-0.376 × 10−2 mm2/N, respectively.  相似文献   

4.
Mechanical properties of ZrB2–SiC and ZrB2–ZrSi2–SiC ceramics in the temperature range from 20 to 1400 °C were studied. It was found that the introduction of zirconium silicide resulted in pore-free ceramics having bending strengths of 400–500 MPa over a wide range of boride–carbide compositions. Zirconium silicide additive did not lead to significant strength and hardness changes at low temperature, but essentially increased Weibull modulus, and, therefore, the reliability of the ceramics. However, zirconium silicide additions resulted in noticeably reduced bending strength in ZrB2–SiC based composites at 1400 °C.  相似文献   

5.
Zirconium diboride (ZrB2) ceramics were prepared by reactive hot pressing of ZrB+B powder mixture. Formation of a transient liquid due to eutectic reaction of ZrB2+Zr→Leu(ZrB2+Zr) at 1661°C following peritectic decomposition of 2ZrB=ZrB2+Zr at 1250°C during heating up of the ZrB+B mixture facilitated densification. The liquid phase was subsequently eliminated via reaction of B with Zr in the eutectic liquid Leu(ZrB2+Zr) to result in a dense ZrB2 ceramic. Full density was reached after reactive hot pressing at 1900°C under 30 MPa for 1 h. The ZrB2 ceramic had a refined microstructure consisting of grains of <1.5 μm in size and relatively good Vickers hardness (21 ± 2 GPa) and flexural strength (595 ± 63 MPa).  相似文献   

6.
ZrC ceramics containing 30 vol% SiC-ZrB2 were produced by high-energy ball milling and reactive hot pressing. The effects of ZrB2 content on the densification, microstructure, and mechanical properties of ceramics were investigated. Fully dense ceramics were achieved as ZrB2 content increased to 10 and 15 vol%. The addition of ZrB2 suppressed grain growth and promoted dispersion of the SiC particles, resulting in fine and homogeneous microstructures. Vickers hardness increased from 23.0 ± 0.5 GPa to 23.9 ± 0.5 GPa and Young’s modulus increased from 430 ± 3 GPa to 455 ± 3 GPa as ZrB2 content increased from 0 to 15 vol%. The increases were attributed to a combination of the higher relative density of ceramics with higher ZrB2 content and the higher Young’s modulus and hardness of ZrB2 compared to ZrC. Indentation fracture toughness increased from 2.6 ± 0.2 MPa⋅m1/2 to 3.3 ± 0.1 MPa⋅m1/2 as ZrB2 content increased from 0 to 15 vol% due to the increase in crack deflection by the uniformly dispersed SiC particles. Compared to binary ZrC-SiC ceramics, ternary ZrC-SiC-ZrB2 ceramics with finer microstructure and higher relative densities were achieved by the addition of ZrB2 particles.  相似文献   

7.
This study reviews densification behaviour, mechanical properties, thermal, and electrical conductivities of the ZrB2 ceramics and ZrB2-based composites. Hot-pressing is the most commonly used densification method for the ZrB2-based ceramics in historic studies. Recently, pressureless sintering, reactive hot pressing, and spark plasma sintering are being developed. Compositions with added carbides and disilicides displayed significant improvement of densification and made pressureless sintering possible at ≤2000 °C. Reactive hot-pressing allows in situ synthesizing and densifying of ZrB2-based composites. Spark plasma sintering displays a potential and attractive way to densify the ZrB2 ceramics and ZrB2-based composites without any additive. Young's modulus can be described by a mixture rule and it decreased with porosity. Fracture toughness displayed in the ZrB2-based composites is in the range of 2–6 MPa m1/2. Fine-grained ZrB2 ceramics had strengths of a few hundred MPa, which increased with the additions of SiC and MoSi2. The small second phase size and uniform distribution led to higher strengths. The addition of nano-sized SiC particles imparts a better oxidation resistance and improves the strength of post-oxidized ZrB2-based ceramics. In addition, the ZrB2-based composites showed high thermal and electrical conductivities, which decreased with temperature. These conductivities are sensitive to composition, microstructure and intergranular phase. The unique combinations of mechanical and physical properties make the ZrB2-based composites attractive candidates for high-temperature thermomechanical structural applications.  相似文献   

8.
Dense ZrB2-SiC-Al3BC3 ultra-high temperature ceramic composite was fabricated by hot pressing sintering at 1900°C for 1 hour under a pressure of 20 MPa using Zirconium diboride (ZrB2) as the raw material and a powder mixture of SiC, B4C, Al, and carbon as the sintering additive. Al and B4C underwent in situ reaction with carbon powder to produce Al3BC3, which promoted the densification of ZrB2 ceramic. SiC grains were found to be elongated during sintering. The ZrB2-SiC-Al3BC3 composite exhibited excellent mechanical properties, such as high flexural strength of 589 ± 147 MPa and fracture toughness of 7.81 ± 1.09 MPa m1/2. Oxidation behavior of the ZrB2-SiC-Al3BC3 composite was studied in air at 1500°C for 1 hour. A continuous layer of oxides consisting of a mixture of SiO2, Al2SiO5, and Al2O3 was formed on the surface of the ZrB2-SiC-Al3BC3 composite. This layer of oxides efficiently prevented oxygen from diffusing into the specimens during oxidation, which improved the oxidation resistance of the ZrB2 ceramics.  相似文献   

9.
High-performance ZrB2-SiC-Cf composite was successfully prepared by low temperature (1450 °C) hot pressing using nanosized ZrB2 powder. Such material exhibited a non-brittle fracture feature, high work of fracture (321 J/m2) and excellent thermal shock resistance as well as good oxidation resistance. Composite incorporating carbon fibers in which the degradation of the carbon fiber was effectively inhibited through low-temperature sintering displayed remarkably improved thermal shock resistance with a critical temperature difference of 754 °C, almost twice those of the reported ZrB2-based ultra-high temperature ceramics. The thermal and chemical stability of the carbon fiber and ceramic matrix were further analyzed by thermodynamic calculation and HR-TEM analysis.  相似文献   

10.
In this work, pure ZrB2-SiC composite powders were obtained using ZrO2, SiO2, B4C and carbon black as raw materials via a boro/carbothermal reduction (BCTR) reaction process at 1500 °C for 2 h in vacuum condition. Based on this finding, porous ZrB2-SiC ceramics were in-situ synthesized via a novel and facile boro/carbothermal reaction process templated pore-forming (BCTR-TPF) method. The phase composition, linear shrinkage, and pore size distribution were also methodically studied. Results show that the porous ZrB2-SiC ceramics with controllable porosity of 67–78%, compressive strength of 0.2–9.8 MPa and thermal conductivity of 1.9–7.0 W·m−1K−1 can be fabricated by varying of ZrO2 and B4C particle sizes. The formation of ZrB2 grains was controlled via solid-solid and solid-liquid-solid growth mechanisms, the growth process of SiC grains was mainly regulated by solid-solid, vapor-vapor and vapor-solid growth mechanisms during the overall synthesis process. Finally, the pore-forming mechanism of porous samples prepared via the BCTR-TPF method was gases combined with template pore-forming mechanism, i.e., B4C and carbon black acted as pore-forming templates, and gaseous products generated in the BCTR reaction were also applied as gas pore-forming agent.  相似文献   

11.
Polymer-derived SiBCN, with superior thermal stability and amorphous activity, was introduced into ZrB2 powders. This sintering aid highly improved the sintering efficiency of ZrB2 ceramics at medium temperature (1000-1600°C), which showed a different service temperature range from that of traditional crystal additives. The microstructure and densification behavior of ZrB2–SiBCN samples were mainly studied. The polymer structural evolution including construction, rearrangement, and crystallization of the amorphous SiBCN network, made a large contribution to the densification of ZrB2 ceramics. The carbothermal reduction of pyrolysis carbon with oxide impurities could not only decrease the oxygen content, but also develop the activity of chemical bonds in SiBCN network. Diffusions and reactions at the interface also benefited the microstructure and consolidation of ZrB2–SiBCN ceramics.  相似文献   

12.
ZrB2–SiC–BN ceramics were fabricated by hot-pressing under argon at 1800 °C and 23 MPa pressure. The microstructure, mechanical and oxidation resistance properties of the composite were investigated. The flexural strength and fracture toughness of ZrB2–SiC–BN (40 vol%ZrB2–25 vol%SiC–35 vol%BN) composite were 378 MPa and 4.1 MPa m1/2, respectively. The former increased by 34% and the latter decreased by 15% compared to those of the conventional ZrB2–SiC (80 vol%ZrB2–20 vol%SiC). Noticeably, the hardness decreased tremendously by about 67% and the machinability improved noticeably compared to the relative property of the ZrB2–SiC ceramic. The anisothermal and isothermal oxidation behaviors of ZrB2–SiC–BN composites from 1100 to 1500 °C in air atmosphere showed that the weight gain of the 80 vol%ZrB2–20 vol%SiC and 43.1 vol%ZrB2–26.9 vol%SiC–30 vol%BN composites after oxidation at 1500 °C for 5 h were 0.0714 and 0.0268 g/cm2, respectively, which indicates that the addition of the BN enhances oxidation resistance of ZrB2–SiC composite. The improved oxidation resistance is attributed to the formation of ample liquid borosilicate film below 1300 °C and a compact film of zirconium silicate above 1300 °C. The formed borosilicate and zirconium silicate on the surface of ZrB2–SiC–BN ceramics act as an effective barriers for further diffusion of oxygen into the fresh interface of ZrB2–SiC–BN.  相似文献   

13.
The mechanical behavior of ZrB2-MoSi2 ceramics made of ZrB2 powder with three different particle sizes and MoSi2 additions from 5 to 70 vol% was characterized up to 1500 °C. Microhardness (12–17 GPa), Young’s modulus (450–540 GPa) and shear modulus (190–240 GPa) decreased with both increasing MoSi2 content and with decreasing ZrB2 grain size. Room temperature fracture toughness was unaffected by grain size or silicide content, whilst at 1500 °C in air it increased with MoSi2 and ZrB2 grain size, from 4.1 to 8.7 MPa m½. Room temperature strength did not trend with MoSi2 content, but increased with decreasing ZrB2 grain size from 440 to 590 MPa for the largest starting particle size to 700–800 MPa for the finest due to the decreasing size of surface grain pullout. At 1500 °C, flexure strength for ZrB2 with MoSi2 contents above 25 vol% were roughly constant, 400–450 MPa, whilst for lower content strength was controlled by oxidation damages. Strength for compositions made using fine and medium ZrB2 powders increased with increasing MoSi2 content, 250–450 MPa. Ceramics made with coarse ZrB2 displayed the highest strengths, which decreased with increasing MoSi2 content from 600 to 450 MPa.  相似文献   

14.
Sintering mechanisms and kinetics were investigated for ZrB2 ceramics produced using reaction hot pressing. Specimens were sintered at temperatures ranging from 1800°C to 2100°C for times up to 120 min. ZrB2 was the primary phase, although trace amounts of ZrO2 and C were also detected. Below 2000°C, the densification mechanism was grain‐boundary diffusion with an activation energy of 241 ± 41 kJ/mol. At higher temperatures, the densification mechanism was lattice diffusion with an activation energy of 695 ± 62 kJ/mol. Grain growth exponents were determined to be ~4.5, which indicated that a grain pinning mechanism was active in both temperature regimes. The diffusion coefficients for grain growth were 1.5 × 10?16 cm4/s at 1900°C and 2.1 × 10?15 cm4/s at 2100°C. This study revealed that dense ZrB2 ceramics can be produced by reactive hot pressing in shorter times and at lower temperatures than conventional hot pressing of commercial powders.  相似文献   

15.
Phase composition, microstructures, and mechanical properties of silicon nitride (Si3N4) ceramics were investigated with ZrB2 and B additives. Results showed that the addition of ZrB2 and/or B in 2.5 and 5 vol.% promoted the phase transformation of α- to β-Si3N4 phase and the formation of bimodal microstructure after hot-pressing at 1500 °C. With the introduction of 2.5 vol.% (ZrB2-B) binary additives, fracture toughness and strength of Si3N4 ceramics increased significantly from 5.2 MPa m1/2 and 384 MPa to 7.2 MPa m1/2 and 675 MPa, respectively. However, the hardness of ceramics decreased slightly from 23.5 GPa to 21.3 GPa, which was still higher than typical values reported on Si3N4 ceramics (15˜17 GPa).  相似文献   

16.
Starting from ZrO2 and boron (molar ratio: 1:4), four ZrB2 powders were synthesized by borothermal reduction method, three of which were designed to introduce minor modifications by combining solid solution with Ti and/or water-washing. The sinterability, microstructures, mechanical properties and thermal conductivity were investigated. In comparison with the conventional borothermal reduction, the modified methods offered significant improvement in terms of densification of ZrB2 ceramics, particularly the mixture that included water-washing. Owing to the refined particle size and boron residues, ZrB2 ceramics from the modified borothermal reduction which included water-washing demonstrated nearly full densification, Vickers hardness of 14.0 GPa and thermal conductivity of 82.5 W/mK after spark plasma sintering at 2000 °C for 10 min. It was revealed that the properties of ZrB2 ceramics could be enhanced utilizing the proposed minor modification, starting from the same raw materials and adopting the same sintering conditions.  相似文献   

17.
With the view to improve the densification behaviour and mechanical properties of ZrB2-SiC ceramics, three synthesis routes were investigated for the production of ZrB2, prior to the fabrication of ZrB2-20 vol. % SiC via spark plasma sintering (SPS). Two borothermal reduction routes, modified with a water-washing stage (BRW) and partial solid solution of Ti (BRS), were utilised, alongside a boro/carbothermal mechanism (BRCR) were utilised to synthesise ZrB2, as a precursor material for the production of ZrB2-SiC. It was determined that reduction in the primary ZrB2 particle size, alongside a diminished oxygen content, was capable of improving densification. ZrB2-SiC ceramics, with ZrB2 derived from BRW synthesis, exhibited a favorable combination of high relative density (98.6%), promoting a marked increase in Vickers hardness (21.4 ± 1.7 GPa) and improved thermal conductivity (68.7 W·m-1K-1).  相似文献   

18.
A carbide boronizing method was first developed to produce dense boron carbide‐ zirconium diboride (“B4C”–ZrB2) composites from zirconium carbide (ZrC) and amorphous boron powders (B) by Spark Plasma Sintering at 1800°C–2000°C. The stoichiometry of “B4C” could be tailored by changing initial boron content, which also has an influence on the processing. The self‐propagating high‐temperature synthesis could be ignited by 1 mol ZrC and 6 mol B at around 1240°C, whereas it was suppressed at a level of 10 mol B. B8C–ZrB2 ceramics sintered at 1800°C with 1 mole ZrC and 10 mole B exhibited super high hardness (40.36 GPa at 2.94 N and 33.4 GPa at 9.8 N). The primary reason for the unusual high hardness of B8C–ZrB2 ceramics was considered to be the formation of nano‐sized ZrB2 grains.  相似文献   

19.
We have explored the feasibility of reducing the spark-plasma-sintering (SPS) temperature of additive-free ZrB2 ultra-high-temperature ceramics (UHTCs) via crystal size refinement of the starting powder down to the low nanoscale. We found that under otherwise the same SPS conditions (75 MPa pressure, and 100 °C/min heating ramp) nanoscale ZrB2 can be densified at temperatures about 450 °C lower than for the typical micrometre and submicrometre ZrB2 powders, and at least 250 °C below the ultra-fine powder temperature. Furthermore, the nanoscale crystal refinement also promotes the production of fine-grained ZrB2 UHTCs. We also found that elimination of the B2O3 impurities plays an important role in the complete densification. The unequalled sinterability of the nanoscale ZrB2 powders highlights the need to use high-energy ball-milling for the comminution of the typical commercially available ZrB2 powders.  相似文献   

20.
The densification behavior and mechanical properties of ZrB2-based composites were investigated. The results demonstrated that the fully dense ZrB2-based composites could be obtained at lower sintering temperature (1600°C) and pressure (30 MPa) when the content of HfSi2 was above 20 vol.%. The as-sintered composite was a special core–shell structure, with ZrB2 as the core and (Zr, Hf)B2 solid solution as the shell. The core–shell structure resulted from the diffusion of Hf atom into the boride matrix, which could accelerate the densification. In addition, the intergranular liquid phase induced by the HfSi2 addition filled the micropores of the composites effectively during the sintering. When the content of HfSi2 increased to 20 vol.%, its compressive strength, hardness, and fracture toughness all reached the maximum values, which were 1617 MPa, 15.99 GPa, and 2.44 MPa m1/2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号