首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the past decade, gadolinium zirconate (Gd2Zr2O7, GZO) has attracted interest as an alternative material to partially yttria‐stabilized zirconia (YSZ) for thermal barrier coatings (TBCs). Despite the well‐known benefits of GZO, such as lower thermal conductivity and superior temperature capability compared to YSZ, processing of GZO via atmospheric plasma spraying (APS) still remains a challenge. Here, we report on APS experiments which were performed to investigate the influence of processing on GZO microstructure and lifetime of GZO/YSZ double‐layer TBCs. Different microstructures of GZO were produced and characterized in terms of porosity, stoichiometry, Young′s modulus, and their effects on the lifetime of YSZ/GZO double‐layer TBCs were discussed. Particle diagnostics were utilized for the optimization of the process parameters with respect to different microstructures of GZO and stoichiometry. It was found that both cumulative porosity of GZO and pore size distribution, which alter the Young′s modulus significantly, govern the lifetime of double layers. In addition, it was shown that the deviation in GZO stoichiometry due to gadolinia evaporation in the investigated range does not display any critical effect on lifetime.  相似文献   

2.
The single-ceramic-layer (SCL) 8YSZ (conventional and nanostructured 8YSZ) and double-ceramic-layer (DCL) La2Zr2O7 (LZ)/8YSZ thermal barrier coatings (TBCs) were fabricated by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal shock behavior of the three as-sprayed TBCs at 1000 °C and 1200 °C was investigated. The results indicate that the thermal cycling lifetime of LZ/8YSZ TBCs is longer than that of SCL 8YSZ TBCs due to the fact that the DCL LZ/8YSZ TBCs further enhance the thermal insulation effect, improve the sintering resistance ability and relieve the thermal mismatch between the ceramic layer and the metallic layer at high temperature. The nanostructured 8YSZ has higher thermal shock resistance ability than that of the conventional 8YSZ TBC which is attributed to the lower tensile stress in plane and higher fracture toughness of the nanostructured 8YSZ layer. The pre-existed cracks in the surface propagate toward the interface vertically under the thermal activation. The nucleation and growth of the horizontal crack along the interface eventually lead to the failure of the coating. The crack propagation modes have been established, and the failure patterns of the three as-sprayed coatings during thermal shock have been discussed in detail.  相似文献   

3.
New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems   总被引:2,自引:0,他引:2  
Pyrochlore materials La2Zr2O7 and Gd2Zr2O7 have been used to produce thermal barrier coating systems by atmospheric plasma spraying. The materials have been applied as single-layer coatings with only a topcoat made of pyrochlore material. In addition, double-layer systems with a first layer of yttria-stabilized zirconia (YSZ) and a top layer made of pyrochlore material were produced. These systems have been tested in thermal cycling test rigs at surface temperatures between 1200-1450°C and the results were compared to the behavior of YSZ coatings. Single-layer coatings had a rather poor thermal cycling performance. On the other hand, double-layer systems showed similar results to YSZ coatings at temperatures below about 1300°C. At higher temperatures the double-layer coatings produced from our own powders revealed excellent thermal cycling behavior. At the highest test conditions, lifetime was thereby orders of magnitude better than that of YSZ coatings. Results indicate that an increase of the maximum surface temperature in gas turbines by at least 100 K becomes possible with the new coatings. Coatings produced from commercial powders showed a somewhat reduced performance.  相似文献   

4.
Glassy deposits, largely consisting of CaO-MgO-Al2O3-SiO2 (CMAS), are a common product on thermal barrier coatings (TBCs) within gas-turbines after an interaction with airborne particles. Here, in order to facilitate the quantification and modelling of the spreading and infiltration behavior of CMAS melts onto and into TBCs we have determined the high temperature viscosities of four widely used synthetic “CMAS” melts and the influence of TBC materials (yttria-stabilized zirconia (YSZ) and gadolinium zirconate (GZO)) dissolution upon them. After a dissolution of 6.5 wt% YSZ or GZO one out of four CMAS melts shows no significant change in viscosity, while the other three melts exhibit a viscosity increase at lower temperatures that continuously changes to a decrease in viscosity towards higher temperatures. The influence of the doping amount on the viscosity was investigated in detail for one CMAS melt (C35M10A7S48) and parametrized.  相似文献   

5.
《Ceramics International》2022,48(24):36450-36459
In the present work, YSZ TBCs and 10 wt% CeO2-doped YSZ thermal barrier coatings (CeYSZ TBCs) were prepared via atmospheric plasma spraying(APS) respectively, whereupon high temperature oxidation experiment was carried out at 1100 °C to compare the high temperature oxidation behavior and mechanism of the two TBCs. The results showed that the doping of CeO2 reduced the porosity of YSZ TBCs by 23%, resulting in smaller oxidation weight gain and lower TGO growth rates for CeYSZ TBCs. Besides, the TGO generated in CeYSZ TBCs was obviously thinner and there were fewer defects inside it. For YSZ TBCs, as the oxidation process proceeded, Al, Cr, Co and Ni elements in the bonding coating were oxidized successively to form loose and porous spinel type oxides (CS), which was apt to cause the spalling failure of TBCs. While, the Al2O3 layer of the TGO generated in CeYSZ TBCs ruptured later than that in YSZ TBCs, which delayed the oxidation of Cr, Co, and Ni elements and the formation of CS accordingly. Therefore, CeO2 doping can effectively improve the high temperature oxidation resistance of YSZ TBCs.  相似文献   

6.
《Ceramics International》2016,42(14):15868-15875
In this research, the high temperature oxidation behavior, porosity, and microstructure of four abradable thermal barrier coatings (ATBCs) consisting of micro- and nanostructured YSZ, YSZ-10%LaPO4, and YSZ-20%LaPO4 coatings produced by atmospheric (APS) method were evaluated. Results show that the volume percentage of porosity in the coatings containing LaPO4 was higher than the monolithic YSZ sample. It was probably due to less thermal conductivity of LaPO4 phases. Furthermore, the results showed that the amount of the remaining porosity in the composite coatings was higher than the monolithic YSZ at 1000 °C for 120 h. After 120 h isothermal oxidation, the thickness of thermally growth oxide (TGO) layer in composite coatings was higher than that of YSZ coating due to higher porosity and sintering resistance of composite coatings. Finally, the isothermal oxidation resistance of conventional YSZ and nanostructured YSZ coating was investigated.  相似文献   

7.
《Ceramics International》2016,42(11):12922-12927
The single-ceramic-layer (SCL) Sm2Zr2O7 (SZO) and double-ceramic-layer (DCL) Sm2Zr2O7 (SZO)/8YSZ thermal barrier coatings (TBCs) were deposited by atmospheric plasma spraying on nickel-based superalloy substrates with NiCoCrAlY as the bond coat. The mechanical properties of the coatings were evaluated using bonding strength and thermal cycling lifetime tests. The microstructures and phase compositions of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results show that both coatings demonstrate a well compact state. The DCL SZO/8YSZ TBCs exhibits an average bonding strength approximately 1.5 times higher when compared to the SCL SZO TBCs. The thermal cycling lifetime of DCL SZO/8YSZ TBCs is 660 cycles, which is much longer than that of SCL 8YSZ TBCs (150 cycles). After 660 thermal cycling, only a little spot spallation appears on the surface of the DCL SZO/8YSZ coating. The excellent mechanical properties of the DCL LZ/8YSZ TBCs can be attributed to the underlying 8YSZ coating with the combinational structures, which contributes to improve the toughness and relieve the thermal mismatch between the ceramic layer and the metallic bond coat at high temperature.  相似文献   

8.
Y2SiO5 is a promising material for the thermal barrier coatings due to its low thermal conductivity, high temperature stability and exceptional resistance for molten silicate attack. However, it suffers low fracture toughness and low coefficient of thermal expansion compared with yttria-stabilized zirconia (YSZ). In this study, a composite coating approach, i.e., incorporating YSZ into Y2SiO5 coating, was employed to overcome those limitations. The double-layered Y2SiO5-YSZ/YSZ coatings were fabricated using atomospheric plasma spraying and tested under thermal cycling at 1150 °C. The phase compositions, microstructure, mechanical properties and the failure behavior were evaluated. It was found that the amorphous phase during spraying would crystallize at high temperature accompanied by volume shrinkage, leading to cracks and spallation in the coating. With YSZ addition, the composite coatings exhibited a much longer lifetime than the single phase Y2SiO5 coating due to a lower volume shrinkage and enhanced toughness.  相似文献   

9.
The oxidation of methane has been studied by sequential flow reaction experiments over M–8YSZ and M–CeO2/8YSZ (M=Ni, Cu, Co, Ag) catalysts as a function of CH4/O2 from 773 to 1073 K. Over Ni–8YSZ and Ni–CeO2/8YSZ, methane pyrolysis is dominant leading to surface carbon formation at temperatures of 873 K and above. While the addition of ceria to Ni–8YSZ to produce Ni–CeO2/8YSZ does not significantly affect the reaction kinetics, the activity of Cu–CeO2/8YSZ, Co–CeO2/8YSZ, and Ag–CeO2/8YSZ are higher than their M–8YSZ counterparts. The activity of Co–CeO2/8YSZ at high temperatures (973 K and above) is higher than Ni-8YSZ with selectivity towards partial methane oxidation and CO formation. Considering Ni-based catalysts are prone to deactivation due to surface carbon accumulation, Co–CeO2/8YSZ, Cu–CeO2/8YSZ, and Ag–CeO2/8YSZ are possible alternative anode cermets for direct hydrocarbon oxidation solid-oxide fuel cells (SOFC).  相似文献   

10.
《Ceramics International》2022,48(7):9673-9680
Solid oxide fuel cells (SOFCs) have strong potential for next-generation energy conversion systems. However, their high processing temperature due to multi-layer ceramic components has been a major challenge for commercialization. In particular, the constrained sintering effect due to the rigid substrate in the fabrication process is a main reason to increase the sintering temperature of ceramic electrolyte. Herein, we develop a bi-layer sintering method composed of a Bi2O3 sintering sacrificial layer and YSZ main electrolyte layer to effectively lower the sintering temperature of the YSZ electrolyte even under the constrained sintering conditions. The Bi2O3 sintering functional layer applied on the YSZ electrolyte is designed to facilitate the densification of YSZ electrolyte at the significantly lowered sintering temperature and is removed after the sintering process to prevent the detrimental effects of residual sintering aids. Subsequent sublimation of Bi2O3 was confirmed after the sintering process and a dense YSZ monolayer was formed as a result of the sintering functional layer-assisted sintering process. The sintering behavior of the Bi2O3/YSZ bi-layer system was systematically analyzed, and material properties including the microstructure, crystallinity, and ionic conductivity were analyzed. The developed bi-layer sintered YSZ electrolyte was employed to fabricate anode-supported SOFCs, and a cell performance comparable to a conventional high temperature sintered (1400 °C) YSZ electrolyte was successfully demonstrated with significantly reduced sintering temperature (<1200 °C).  相似文献   

11.
《Ceramics International》2017,43(5):4048-4054
Zirconates with pyrochlore structure, such as Gd2Zr2O7, are new promising thermal barrier coatings because of their very low thermal conductivity and good chemical resistance against molten salts. However, their coefficient of thermal expansion is low, therefore their thermal fatigue resistance is compromised. As a solution, the combination of yttria-stabilised zirconia (YSZ) and Gd2Zr2O7 can reduce the thermal contraction mismatch between the thermal barrier coating parts.In the present study, two possible designs have been performed to combine YSZ/Gd2Zr2O7. On the one hand, a multilayer coating was obtained where YSZ layer was deposited between a Gd2Zr2O7 layer and a bond coat. On the other hand, a functionally-graded coating was designed where different layers with variable ratios of YSZ/Gd2Zr2O7 were deposited such that the composition gradually changed along the coating thickness.Multilayer and functionally-graded coatings underwent isothermal and thermally-cycled treatments in order to evaluate the oxidation, sintering effects and thermal fatigue resistance of the coatings. The YSZ/Gd2Zr2O7 multilayer coating displayed better thermal behaviour than the Gd2Zr2O7 monolayer coating but quite less thermal fatigue resistance compared to the conventional YSZ coating. However, the functionally-graded coating displays a good thermal fatigue resistance. Hence, it can be concluded that this kind of design is ideal to optimise the behaviour of thermal barrier coatings.  相似文献   

12.
Yttria-stabilized zirconia (YSZ) fine powders were prepared via sol–gel route in order to shape thermal barrier coatings (TBCs) from these powders. The main objective is to develop new undirectional coatings to allow best thermo-mechanical accommodations compared to conventional processes. To reach this aim, powders have to be able first to be highly dispersed into a sol (non-agglomeration, high specific surface area, etc.) and second to crystallize in the required metastable phase t′. Two routes have been used to dry gels: the conventional way which consists of simple evaporation of the solvent is compared to drying in supercritical conditions. Both YSZ powders after calcination at 950 °C of xerogel (Ex-xero-YSZ powder) and aerogel (Ex-aero-YSZ powder) crystallize in the tetragonal form. N2 adsorption/desorption analysis of the Ex-xero-YSZ powder indicates an Sw of 2.8 m2/g. For the Ex-aero-YSZ powder, the Sw (26 m2/g) is much higher than of Ex-xero-YSZ, leading to a better sintering capability. This high Sw is correlated to the small crystallite size (26 nm) and the alveolar morphology of Ex-aero-YSZ powders compared to Ex-xero-powder (49 nm). By reducing particles size and increasing the Sw of the powders, supercritical drying appears as a promising way to prepare stable slurries or loaded sols from fine YSZ particles for TBC applications. Indeed, after preparing nanometric powders, they are dispersed into a sol before shaping on superalloys substrates. After thermal treatment at 950 °C for 2 h which corresponds to the working temperature of TBC, the final aim will be to prepare ceramic YSZ coatings.  相似文献   

13.
Gadolinium zirconate (Gd2Zr2O7, GZO) as an advanced thermal barrier coating (TBC) material, has lower thermal conductivity, better phase stability, sintering resistance, and calcium-magnesium-alumino-silicates (CMAS) attack resistance than yttria-stabilized zirconia (YSZ, 6-8 wt%) at temperatures above 1200°C. However, the drawbacks of GZO, such as the low fracture toughness and the formation of deleterious interphases with thermally grown alumina have to be considered for the application as TBC. Using atmospheric plasma spraying (APS) and suspension plasma spraying (SPS), double-layered YSZ/GZO TBCs, and triple-layered YSZ/GZO TBCs were manufactured. In thermal cycling tests, both multilayered TBCs showed a significant longer lifetime than conventional single-layered APS YSZ TBCs. The failure mechanism of TBCs in thermal cycling test was investigated. In addition, the CMAS attack resistance of both TBCs was also investigated in a modified burner rig facility. The triple-layered TBCs had an extremely long lifetime under CMAS attack. The failure mechanism of TBCs under CMAS attack and the CMAS infiltration mechanism were investigated and discussed.  相似文献   

14.
Thermal sprayed ceramic coatings have extensively been used in components to protect them against friction and wear. However, the poor lubricating ability severely limits their application. Herein, yttria-stabilized zirconia (YSZ)/MoS2 composite coatings were successfully fabricated on steel substrate with the combination of thermal spraying technology and hydrothermal reaction. Results show that the synthetic MoS2 powders are composed of numbers of ultra-thin sheets (about 7 ~ 8?nm), and the sheet has obvious lamellar structure. After vacuum impregnation and hydrothermal reaction, numbers of MoS2 powders, look like flowers, generate inside the plasma sprayed YSZ coating. Moreover, the growing point of the MoS2 flower is the intrinsic micro-pores of YSZ coating. The friction and wear tests under high vacuum environment indicate that the composite coating has an extremely long lifetime (>?100,000 cycles) and possesses a low friction coefficient less than 0.1, which is lower by about 0.15 times than that of YSZ coating. Meanwhile, the composite shows an extremely low wear rate (2.30?×?10?7 mm3 N?1 m?1) and causes slight wear damage to the counterpart. The excellent lubricant and wear-resistant ability are attributed to the formation of MoS2 transfer films and the ultra-smooth of the worn surfaces of hybrid coatings.  相似文献   

15.
《Ceramics International》2016,42(6):7360-7365
Y2O3 stabilized ZrO2 (YSZ) has been considered as the material of choice for thermal barrier coatings (TBCs), but it becomes unstable at high temperatures and its thermal conductivity needs to be further reduced. In this study, 1 mol% RE2O3 (RE=La, Nd, Gd, Yb) and 1 mol% Yb2O3 co-doped YSZ (1RE1Yb–YSZ) were fabricated to obtain improved phase stability and reduced thermal conductivity. For 1RE1Yb–YSZ ceramics, the phase stability of metastable tetragonal (t′) phase increased with decreasing RE3+ size, mainly attributable to the reduced driving force for t′ phase partitioning. The thermal conductivity of 1RE1Yb–YSZ was lower than that of YSZ, with the value decreasing with the increase of the RE3+ size mainly due to the increased elastic field in the lattice, but 1La1Yb–YSZ exhibited undesirably high thermal conductivity. By considering the comprehensive properties, 1Gd1Yb–YSZ ceramic could be a good potential material for TBC applications.  相似文献   

16.
Processing of Gd2Zr2O7 by atmospheric plasma spraying (APS) is challenging due to the difference in vapor pressure between gadolinia and zirconia. Gadolinia is volatilized to a greater extent than zirconia and the coating composition unfavorably deviates from the initial stoichiometry. Aiming at stoichiometric coatings, APS experiments were performed with a TriplexPro? plasma torch at different current levels. Particle diagnostics proved to be an effective tool for the detection of potential degrees of evaporation via particle temperature measurements at these varied current levels. Optimized spray parameters for Gd2Zr2O7 in terms of porosity and stoichiometry were used to produce double‐layer TBCs with an underlying yttria‐stabilized zirconia (7YSZ) layer. For comparison, double layers were also deposited with relatively high torch currents during Gd2Zr2O7 deposition, which led to a considerable amount of evaporation and relatively low porosities. These coatings were tested in thermal cycling rigs at 1400°C surface temperature. Double layers manufactured with optimized Gd2Zr2O7 spray parameters revealed very good thermal cycling performance in comparison to standard 7YSZ coatings, whereas the others showed early failures. Furthermore, different failure modes were observed; coatings with long lifetime failed due to TGO growth, while the coatings displaying early failures spalled through crack propagation in the upper part of the 7YSZ layer.  相似文献   

17.
This paper compares the hot corrosion performance of yttria stabilized zirconia (YSZ), Gd2Zr2O7, and YSZ + Gd2Zr2O7 composite coatings in the presence of molten mixture of Na2SO4 + V2O5 at 1050 °C. These YSZ and rare earth zirconate coatings were prepared by atmospheric plasma spray (APS). Chemical interaction is found to be the major corrosive mechanism for the deterioration of these coatings. Characterizations using X-ray diffraction (XRD) and scanning electron microscope (SEM) indicate that in the case of YSZ, the reaction between NaVO3 and Y2O3 produces YVO4 and leads to the transformation of tetragonal ZrO2 to monoclinic ZrO2. For the Gd2Zr2O7 + YSZ composite coating, by the formation of GdVO4, the amount of YVO4 formed on the YSZ + Gd2Zr2O7 composite coating is significantly reduced. Molten salt also reacts with Gd2Zr2O7 to form GdVO4. Under a temperature of 1050 °C, Gd2Zr2O7 based coatings are more stable, both thermally and chemically, than YSZ, and exhibit a better hot corrosion resistance.  相似文献   

18.
《Ceramics International》2021,47(18):26010-26018
Metal-ceramic nanocomposite coatings have been applied to many industrial applications owing to their remarkable properties such as wear, corrosion and high temperature oxidation resistance than that of metals and alloys in high temperature environments. In this study, YSZ and Ni-YSZ nanocomposite coatings deposited by electron beam physical vapour deposition (EBPVD) for high temperature environments have been investigated. Initially friction and wear behaviour of YSZ coatings deposited at various substrate temperature were studied. Then the effect on wear response of Ni-YSZ nanocomposites with different Ni content were investigated using a ball-on-disc micro tribometer. The structural and tribochemical changes that occurred in the wear tracks of YSZ and Ni-YSZ coatings were investigated using field emission scanning electron microscopy and Raman spectroscopy. The results obtained on sliding wear and friction behaviour of these nanocomposite coatings suggest that 50 wt.% of Ni in YSZ nanocomposite provides good wear resistance behaviour than that of other coatings. Such an improvement in tribomechanical and wear performance of the nanocomposite coating could be attributed to the optimum amount of Ni which promotes the formation of NiO from Ni due to the frictional heat between nanocomposite coating and the sliding counter body in wear track as confirmed by Raman analysis.  相似文献   

19.
《Ceramics International》2020,46(4):4142-4147
La2Ce2O7 (LC) has attracted extensive attention as promising material for thermal barrier coatings (TBCs) in next generation gas turbines due to its outstanding thermophysical properties. To eliminate the reaction between LC and thermal grown oxides (TGO), yttria stabilized zirconia (YSZ) is usually employed as the interlayer to form LC/YSZ double-layered structures. However, recent studies have revealed that chemical stability of LC and YSZ system deteriorates at high temperatures, which may hinder the application of LC as TBCs. To address this problem, the chemical compatibility between La2(Ce1-xZrx)2O7 (LCZ) and YSZ at high temperatures was investigated in this work via experiments and atomistic simulations. Results reveal that chemical compatibility increased with the increase in Zr content of LCZ. Corresponding molecular dynamic simulations further verify that the increase in Zr content of LCZ system would reduce Gibbs free energy of LCZ-YSZ composite system. Moreover, common phenomena in LC-YSZ system, such as abnormal grain coarsening and intensive pore diffusion, were effectively suppressed in LCZ-YSZ composite, due to enhanced high temperature chemical compatibility. Results also indicate that the addition of buffer layer, i.e., LCZ-YSZ composite, can effectively improve chemical stability of TBCs based on double layered LC/YSZ.  相似文献   

20.
Ingestion of siliceous particulate debris into both propulsion and energy turbines has introduced significant challenges in harnessing the benefits of enhanced operation efficiencies through the use of higher temperatures and thermal barrier coatings (TBCs). The so-called CMAS (for calcium-magnesium alumino-silicate) particles can melt in the gas path at temperatures greater than 1200C, where they will subsequently impact the coating surface and infiltrate through the carefully engineered porosity or cracks in a TBC. Ultimately, this CMAS attack causes premature spallation through its solidification and stiffening the ceramic during cooling. It has been noted in recent years, that TBCs based on yttria stabilized zirconia (YSZ) are completely non-resistant to CMAS attack due to their lack of reactivity with infiltrant liquid. New TBC ceramics such as Gadolinium Zirconate (GZO) show promise of CMAS resistance through rapid reaction-induced crystallization and solidification of the infiltrant, leading to its arrested infiltration. In both situations, the microstructure (porosity, micro and macro cracks) can be important differentiators in terms of the infiltration and subsequent failure mechanisms. This paper seeks to examine the interplay among microstructure, material, and CMAS attack in different scenarios. To do so, different types of YSZ & GZO single and multilayer coatings were fabricated using Air Plasma Spray (APS) and exposed to CMAS through isothermal and gradient mechanisms. In each of the cases, beyond their unique interactions with CMAS, it was observed the inherent microstructure and character of the porosity of the coating will have an additional role on the movement of the melt. For instance, vertical cracks can provide pathways for accelerated capillaric flow of the melt into both YSZ and GZO coatings. Based on these observations multilayer coatings have been proposed and realized toward potentially reducing complete coating failure and supporting multiple CMAS attack scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号