首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Due to high ductility, high-temperature melting, low thermal expansion coefficient, etc., tungsten (W) might be considered to be an ideal reinforcement in toughening or strengthening Si3N4 ceramics. However, it is difficult to fabricate W/Si3N4 composites due to the possible reactions between W and Si3N4 during sintering process at the high temperature. In this work, a novel way to avoid the reactions and fabricate the W/Si3N4 composites was proposed by thermodynamic analysis and verified by experiment. Firstly, the phase equilibrium between W and Si3N4 as a function of temperature and nitrogen pressure was thermodynamically calculated, which indicates that one critical nitrogen pressure exists for reactions between W and Si3N4 at a certain temperature. As the nitrogen pressure is higher than the critical value, the reactions would be inhibited or adversely proceeded. Based on the results, W was innovatively in-situ introduced in the form of WSi2 after sintering at 1750?°C under 50?bar nitrogen pressure. Moreover, the fracture toughness of Si3N4 ceramics was enhanced from 7.1?±?0.2 to 8.0?±?0.4?MPa?m1/2, which proposes a new reinforcement or method in toughening Si3N4 ceramics.  相似文献   

2.
Combined compression-torsion tests were performed on the thermal-treated and as-machined silicon nitride ceramics to investigate their fracture behavior under multiaxial stress states. The thermal-treated samples showed considerable high strength and low anisotropy to the grinding direction in flexure tests compared to the as-machined samples. Under combined compression and torsion stress states, the thermal-treated samples showed considerably higher tensile strength than that of as-machined samples at low compressive stress states and weakening with increasing compression stress. The as-machined samples showed little decrease in tensile strength with increasing compression stress and comparable tensile strength with the thermal-treated samples under a highly compressive stress state. The behavior of thermal-treated samples were well described by the statistical theory of multiaxial fracture for volume-distributed flaws combined with a mixed-mode fracture criterion with the shear sensitivity constant of 1.75 and 1.65 for Shetty’s criterion and the ellipsoidal criterion, respectively.  相似文献   

3.
In this study, silicon nitride (Si3N4) ceramics added with and without boron nitride nanotubes (BNNTs) were fabricated by hot-pressing method. The influence of sintering temperature and BNNTs content on the microstructures and mechanical properties of Si3N4 ceramics were investigated. It was found that both flexural strength and fracture toughness of Si3N4 were improved when sintering temperature increases. Moreover, α-Si3N4 phase could transform into β-Si3N4 phase completely when sintering temperature rises to 1800 °C and above. BNNTs can enhance the fracture toughness of Si3N4 dramatically, which increases from 7.2 MPa m1/2 (no BNNTs) to 10.4 MPa m1/2 (0.8 wt% BNNTs). However, excessive addition of BNNTs would reduce the fracture toughness of Si3N4. Meanwhile, the flexural strength and relative density of Si3N4 decreased slightly when BNNTs were added. The related toughening mechanism was also discussed.  相似文献   

4.
《Ceramics International》2023,49(6):9035-9041
The high performance Si3N4 ceramic was prepared firstly for TiO2, Y2O3 and MgO as pressureless sintering additives. Si3N4 ceramic with relative density of 99.6% and flexural strength of 785 ± 23.3 MPa could be obtained with 3 mol% TiO2 and sintered at 1800 °C for 2 h. After annealing at 1700 °C, the facture toughness of sample of 1 mol% TiO2 increased from 8.31 ± 0.28 MPa m1/2 to 9.84 ± 0.16 MPa m1/2. The flexural strength of sample of 2 mol% TiO2 increased from 707 ± 26 MPa to 981 ± 16 MPa, thermal conductivity increased from 57.8 W/(m·K) to 68.49 W/(m·K). The XRD results showed that the ratio of I101/I210 and grain height reached to 1.84 and 5 μm of the sample of 3 mol% TiO2, respectively. The present investigation revealed that the three-dimensional array of highly oriented crystalline Si3N4 micro rods could be prepared which array on the homogeneous substrates by using TiO2 as agent. This phenomenon may propose a method that the mechanical properties the Si3N4 ceramics added TiO2 can be improved significantly after annealing process.  相似文献   

5.
《Ceramics International》2017,43(11):8284-8288
The silicon nitride ceramics with a beneficial combination of low dielectric losses and improved physical properties was fabricated by cold isostatic pressing and pressureless sintering. The fine grain microstructure, three-phase composition based on the β-SiAlON, the small amount of the glass phase and relatively small porosity promote a unique combination of a low thermal conductivity 14.51 W m−1 K−1 and low dielectric loss 1.4·10−3. A novel method is proposed to overcome the main drawbacks of the commercial and high-cost technologies.  相似文献   

6.
The aim of this study was to evaluate the mechanical properties and coloration of silicon nitride ceramics in the presence of RE2O3 (RE = Nd, Eu or Dy). Dense Si3N4 ceramics were prepared by gas pressure sintering at 1800 °C for 2 h. XRD analysis confirmed the complete transformation of α-Si3N4 to β-Si3N4. The fracture toughness and flexure strengths were 11.93 ± 0.56 MPa·m1/2, 667 ± 40.98 MPa with the addition of Eu2O3 (SE). Base on the SEM image, the pull-out, bridging and deflection of large grains were observed and contributed to the increase in mechanical properties. The chromaticity of sintered bodies was measured using a spectrophotometer. The color difference of the ceramics is due to the formation of different color developing compounds according to the EDS. Results showed that high-toughness and colorful Si3N4 ceramics can be prepared using YAG:Ce3+ as sintering additive and RE2O3 as the colorant.  相似文献   

7.
《Ceramics International》2021,47(24):34538-34553
A comprehensive and novel investigation on multiple-layer, square-beam laser shock treatment (“laser peening”) of Si3N4 ceramics is reported in this work. Surface topography, hardness, fracture toughness (KIc), residual stresses, and microstructural changes were investigated. The evaluation of fracture toughness via the Vickers hardness indentation method revealed a reduction in crack lengths produced by the indenter after laser shock treatment (LST). Upon appropriate calculation, this revealed an increase in KIC of 60%. This being attributed to a near-surface (50 μm depth) compressive residual stress measured at −289 MPa. Multiple layer LST also induced beneficial residual stresses to a maximum measured depth of 512 μm. Oxidation was evident, only on the top surface of the ceramic, post LST (<5 μm depth) and was postulated to be due to hydrolyzation. The surface enhancement in KIC and flaw-size reduction was assigned to an elemental change on the surface, whereby, Si3N4 was transformed to SiO2, particularly, with multiple layers of LST. Compressive residual stresses measured in the sub-surface were attributed to mechanical effects (below sub-surface elastic constraint) and corresponding shock-wave response of the Si3N4. This work has led to a new mechanistic understanding regarding the response of Si3N4 ceramics subject to the LST deployed in this resesrch. The findings are significant because inducing deep compressive residual stresses and corresponding enhancement in surface KIC are important for the enhanced durability in many applications of this ceramic, including cutting tools, hip and knee implants, dental replacements, bullet-proof vests and rocket nozzles in automotive, aerospace, space and biomedical industries.  相似文献   

8.
烧结助剂对反应烧结氮化硅陶瓷的影响   总被引:2,自引:0,他引:2  
以Si粉和C粉为主要原料 ,在氮气流量为1.2L·min- 1,氮化温度为 1380℃ ,保温时间为 2 0h的条件下 ,研究了分别以 10wt%的MgO、Al、Al2 O3和Al2 O3+Y2 O3粉为烧结助剂对反应烧结氮化硅陶瓷的影响。结果表明 :以MgO粉作烧结助剂时 ,试样的主要成分是MgSiO3,另外还有Si2 N2 O ,但没有Si3N4 生成 ;以Al粉作烧结助剂时 ,试样的主要成分是SiO2 ,仅有少量Si3N4 存在 ;以Al2 O3作烧结助剂时 ,试样的主要成分是β Si3N4 和α Si3N4 ;以 2wt%Al2 O3+8wt%Y2 O3作烧结助剂时 ,试样的主要成分为 β Si3N4 ,同时含有少量α Si3N4 。  相似文献   

9.
Porous silicon nitride ceramics with a fibrous interlocking microstructure were synthesized by carbothermal nitridation of silicon dioxide. The influences of different starting powders on microstructure and mechanical properties of the samples were studied. The results showed that the microstructure and mechanical properties of porous silicon nitride ceramics depended mostly on the size of starting powders. The formation of single-phase β-Si3N4 and the microstructure of the samples were demonstrated by XRD and SEM, respectively. The resultant porous Si3N4 ceramics with a porosity of 71% showed a relative higher flexural strength of 24 MPa.  相似文献   

10.
In recent decades, due to some limitations from alumina (Al2O3) and zirconia (ZrO2), silicon nitride (Si3N4) has been investigated as a novel bioceramic material, mainly in situations where a bone replacement is required. Si3N4 ceramics and its derivative form, SiAlON, possess advantages in orthopedics due to their mechanical properties and biologically acceptable chemistry, which accelerates bone repair. However, biological applications require additional properties, enabling stronger chemical bonding to the surrounding tissue for better fixation and the prevention of bacteria biofilm formation. Therefore, two commercial Si3N4 and SiAlON ceramics were investigated in this study and compared to each other according to their material properties (like wetting angles and surface chemistry) and their antibacterial behaviors using E. coli. Results provided evidence of a 15% reduction in E. coli colonization after just 24 h on Si3N4 compared to SiAlON which is impressive considering no antibiotics were used. Further, a mechanism of action is provided. In this manner, this study provides evidence that Si3N4 should be further studied for a wide range of antibacterial orthopedic, or other suitable biomaterial applications.  相似文献   

11.
借助光学显微镜、扫描电子显微镜和X射线衍射分析等手段,研究了矿渣侵蚀后的氮化硅结合碳化硅材料的显微结构和物相组成.探讨了氮化硅结合碳化硅材料的损坏机理。  相似文献   

12.
氮化硅结合碳化硅耐火材料的氧化   总被引:5,自引:0,他引:5  
氮化硅结合碳化硅耐火材料高温氧化后,其抗折强度有所提高,但经扫描电镜观察,材料断面结构已发生了明显的变化。该材料长时间在氧化气氛中使用,可靠性将下降。  相似文献   

13.
《Ceramics International》2017,43(16):13411-13421
Silicon nitride ceramics are widely used as advanced structural components because of their excellent thermal and mechanical properties at ambient and elevated temperatures. In manufacturing industries, grinding is an efficient and productive technique for finishing ceramic workpieces. However, high wheel-workpiece friction and the extreme hardness associated with silicon nitride cause large heat generation during grinding. The heat produced during grinding impairs the workpiece quality by inducing surface and sub-surface damages, tensile residual stresses etc. The damages can critically limit the applications of ground ceramic components. Extensive experimental studies have been carried out to find the effect of dry and nano MQL (Graphite, WS2 and MoS2) grinding conditions on silicon nitride using resin bonded diamond wheel at different parametric (wheel speed, depth of cut and table speed) combinations. Results indicate that the use of nanofluids considerably improve the process performance in terms of grinding forces, surface finish and sub-surface damage. The ground surface is characterized by optical microscopy, SEM/EDX and XRD.  相似文献   

14.
Self-joining of St. Gobain Si3N4 (NT-154) using a ductile Cu-Al-Si-Ti active braze (Cu-ABA) was demonstrated. A reaction zone (∼2.5-3.5 μm thick) developed at the interface after 30 min brazing at 1317 K. The interface was enriched in Ti and Si. The room temperature compressive shear strengths of Si3N4/Si3N4 and Inconel/Inconel joints (the latter created to access baseline data for use with the proposed Si3N4/Inconel joints) were 140 ± 49 MPa and 207 ± 12 MPa, respectively. High-temperature shear tests were performed at 1023 K and 1073 K, and the strength of the Si3N4/Si3N4 and Inconel/Inconel joints were determined. The joints were metallurgically well-bonded for temperatures above 2/3 of the braze solidus. Scanning and transmission electron microscopy studies revealed a fine grain microstructure in the reaction layer, and large grains in the inner part of the joint with interfaces being crack-free. The observed formation of Ti5Si3 and AlN at the joint interface during brazing is discussed.  相似文献   

15.
Highly c-axis textured β-silicon nitride (β-Si3N4) ceramic with fine grains was prepared by a new method of hot extrusion for the first time. The (002) pole figure on the section plane vertical to extruding direction showed a characteristic of center rotational symmetry. The average cline angle between elongated β-Si3N4 grains and hot extruding direction was about 14.4°. The degree of c-axis texturing by hot extrusion was comparable to that achieved by rotating magnetic field. The hardness and toughness anisotropy in different direction was apparent and relatively higher hardness was achieved in the present work mainly due to the finer grain size. Therefore, many different compositions of c-axis aligned Si3N4-based ceramics with tailored mechanical properties could be achieved by the strategy of hot extrusion.  相似文献   

16.
Perhydropolysilazane precursors to silicon nitride ceramics   总被引:12,自引:0,他引:12  
Preceramic perhydropolysilazane has been synthesized by the ammonolysis of dichlorosilane pyridine adduct. Perhydropolysilazane was polymerized and cross-linked by heat treatment with or without ammonia by dehydrogen condensation between SiH and NH and disproportionation at the SiH site in the polymers in the presence of pyridine. Ceramic yields of 82–93% were observed for perhydropolysilazane. The ceramic yield depended on the branching-group, i.e., –SiH < and –N<, content of the polymer. Controlled molecular weight distribution and elemental composition of the polymers obtained by heat treatment in the presence of pyridine meet various requirements for the production of shaped ceramics.  相似文献   

17.
《应用陶瓷进展》2013,112(3):173-177
Abstract

Silicon nitride ceramics with rare earth (Re) compound (5 wt-%) and MgO (3 wt-%) additives were fabricated by spark plasma sintering and following heat treatment. The Re compounds included two groups: ReF3 ((Re?=?La,Nd,Gd) and Re2O3 (Re?=?La,Nd,Gd). Specimens show the same tendency in the sintering shrinkage rate, relative density, grain size and bending strength with the increasing Re cation (Re3+) radius both in ReF3 and Re2O3 added samples. However, as to aspect ratios and thermal conductivity, the change rules are completely opposite between the two groups of specimens.  相似文献   

18.
氮化物结合碳化硅耐火材料的研究现状   总被引:7,自引:1,他引:7  
分别概述了以氮化硅、赛隆和氧氮化硅作为结合相 的SiC材料的结构特点、理化性能、生产工艺和应用情况,详细 介绍了国内这3种材料的研究现状,并对今后氮化物结合SiC 材料的研究内容提出了自己的观点。  相似文献   

19.
《Ceramics International》2019,45(10):12757-12763
Dense silicon nitride (Si3N4) ceramics were prepared using Y2O3 and MgF2 as sintering aids by spark plasma sintering (SPS) at 1650 °C for 5 min and post-sintering annealing at 1900 °C for 4 h. Effects of MgF2 contents on densification, phase transformation, microstructure, mechanical properties, and thermal conductivity of the Si3N4 ceramics before and after heat treatment were investigated. Results indicated that the initial temperature of liquid phase was effectively decreased, whereas phase transformation was improved as increasing the content of MgF2. For optimized mechanical properties and thermal conductivity of Si3N4, optimum value for MgF2 content existed. Sample with 3 mol.% Y2O3 and 2 mol.% MgF2 obtained optimum flexural strength, fracture toughness and thermal conductivity (857 MPa, 7.4 MPa m1/2 and 76 W m−1 K1, respectively). It was observed that excessive MgF2 reduced the performance of the ceramic, which was caused by the presence of excessive volatiles.  相似文献   

20.
By having superior properties silicon nitride ceramics can be considered as the state-of-the-art material in the bearing industry. Vickers indentation of this material is typically accompanied by formation of cracks visible on surface. Two Finite Elements models are developed in the current work: the first model is based on fracture mechanics and the second on cleavage stress criterion. Plastic behavior of silicon nitride is included in the modeling, and since little is known on the plasticity of this material, the Drucker-Prager model (used for non-metallic materials) along with the classical J2-plasticity are explored. The results of the fracture mechanics based model correlate well with experimental results in terms of surface crack length. The numerical results in terms of the morphology of the indented zone (including cracks and plastic zone) are provided by the stress criterion based model, and these results correlate well too, with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号