首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dense monoliths of rare‐earth zirconate‐stannate solid solutions (Yb2Zr2O7)1?x(Ln2Sn2O7)x (Ln = Nd, Sm) were prepared by solid‐state reaction. Characterized by XRD, Raman, SEM, and TEM, a double‐phase structure of Yb2Zr2O7‐rich fluorite and Nd2Sn2O7‐rich pyrochlore was observed in the specimens of x = 0.4 and 0.5 of (Yb2Zr2O7)1?x(Nd2Sn2O7)x series while complete solid solutions were formed within the whole composition range of (Yb2Zr2O7)1?x(Sm2Sn2O7)x series. Except for the defect phonon scattering, lattice softening caused by order–disorder phase transformation between pyrochlore and fluorite structures also plays an important role in minimizing the thermal conductivity. Low thermal conductivity with positive temperature dependence is achieved in both the series. Considering the structure stability and low thermal conductivity, rare‐earth zirconate‐stannate solid solutions may be promising materials for thermal insulating applications, such as thermal barrier coatings.  相似文献   

2.
(Ta2O5)1-x- (TiO2)x (TTOx) thin films, with x = 0, 0.03, 0.06, 0.08, and 0.11, were deposited using magnetron direct current (DC) sputtering method onto the P/boron-silicon (1 0 0) substrates by varying areas of Tantalum and Titanium metallic targets, in oxygen environment at ambient temperature. The as-deposited thin films were annealed at temperatures ranging from 500 to 800 °C. Generally, the formation of the Ta2O5 structure was observed from the X-ray diffraction measurements of the annealed films. The capacitance of prepared metal– oxide– semiconductor (MOS) structures of Ag/TTOx/p-Si was measured at 1 MHz. The dielectric constant of the deposited films was observed altering with varying composition and annealing temperature, showing the highest value 71, at 1 MHz, for the TTOx films, x = 0.06, annealed at 700 °C. With increasing annealing temperature, from 700 to 800 °C, the leakage current density was observed, generally decreasing, from 10?5 to 10?8 A cm?2, for the prepared compositions. Among the prepared compositions, films with x = 0.06, annealed at 800 °C, having the observed value of dielectric constant 48, at 1 MHz; and the leakage current density 2.7 × 10?8 A cm?2, at the electric field of 3.5 × 105 V cm?1, show preferred potential as a dielectric for high-density silicon memory devices.  相似文献   

3.
β-(AlxGa1−x)2O3 films have several critical properties of interest to the research community, including a wide bandgap that may be used in the development of new electronic, optoelectronic, and photonic devices. Here we demonstrate the first time fabricated metal-alkoxide-based spin-coated single-phase epitaxial β-(AlxGa1−x)2O3 films on c-sapphire substrates with ( 2 ¯ 0 1 ) $(\bar{2}\,0\,1)$ orientation and good crystallinity that is comparable to the films fabricated using other film deposition techniques, such as molecular beam epitaxy and chemical vapor deposition. Using this technique, we generated films with broad Al compositions (x) of 0.3, 0.5, and 0.7 with bandgap energies of 5.15, 5.56, and 6.16 eV, respectively, estimated from the X-ray photoelectron spectroscopy inelastic energy-loss spectra. Photoluminescence emission spectra in the ultraviolet and visible (blue) wavelength range highlighted several intrinsic defects in the film structure that functioned as luminescence centers, including self-trapped exciton and recombining donor-to-acceptor band. Detailed analysis of the structural and optical properties of β-(AlxGa1−x)2O3 epitaxial films revealed that this low-cost and scalable solution-deposition approach coupled with a spin-coating technique could be used to fabricate β-(AlxGa1−x)2O3 films with tunable properties.  相似文献   

4.
The CaO-MgO-Al2O3-SiO2 (CMAS) corrosion of thermal barrier coatings (TBCs) is a crucial problem for the lifetime of blades and vanes of jet engine and gas turbine at high operating temperature. Although many new alternative materials for TBCs have been developed in recent years, their application is limited by the CMAS corrosion. On the other hand, the composition difference of CMAS between regions makes solving this problem very difficult. Therefore, in this study, the yearly composition changes of sand-dust around Beijing area were investigated. The high-temperature corrosion behavior of air-plasma-sprayed 8YSZ and newly developed (LaxYb1−x)2Zr2O7 TBCs by the representative sand-dust of Beijing was investigated. In comparison, a universally used CaO-riched composition of simulated silicate deposit was also adopted for the TBCs corrosion test. It is found that the (LaxYb1−x)2Zr2O7 TBCs performs much better anti-corrosion behavior than that of 8YSZ, both by Beijing sand-dust and simulated one. Particularly, Yb2Zr2O7 TBCs appear to be the optimum material against silicate deposits attack. The mechanism of silicate deposits corrosion has also been discussed.  相似文献   

5.
《Ceramics International》2022,48(22):33563-33570
Lanthanum hafnate (La2Hf2O7) with a pyrochlore structure has excellent high temperature stability and low thermal conductivity, which is promising for thermal/environmental barrier coatings (T/EBCs) applications. To reduce its thermal expansion coefficient (TEC) so as to better match SiCf/SiC composites, a smaller tetravalent dopant Ti4+ has been introduced in the Hf-sites to form La2(Hf1-xTix)2O7 (x ≤ 0.20). The phase composition and microstructure confirms that La2(Hf1-xTix)2O7 solid solutions possess a pure pyrochlore structure. With an increase of x, their TECs are decreasing consistently, whilst their thermal conductivities of La2(Hf1-xTix)2O7 are slightly increasing at high temperature but still much lower than those of meta-stable yttria partially stabilized zirconia, both of which are attributing to an increase of elastic modulus after Ti4+ doping on Hf-sites. The extremely excellent high temperature stability, relatively low thermal conductivities and low TECs suggest that La2(Hf1-xTix)2O7 is a prospective candidate material for T/EBC applications.  相似文献   

6.
High-quality ternary relaxor ferroelectric (100)-oriented Mn-doped 0.36Pb(In1/2Nb1/2)O3-0.36Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (Mn-PIMNT) thin films were grown on SrRuO3-buffered SrTiO3 single-crystal substrate in a wide deposition temperature range of 550-620°C using the pulsed laser deposition method. The phase structure, ferroelectric, dielectric, piezoelectric properties, and nanoscale domain evolution were studied. Under the deposition temperature of 620°C, the ferroelectric hysteresis loops and current-voltage curves showed that the film owned significantly enhanced remnant ferroelectric polarization of 34.5 μC/cm2 and low leakage current density of 2.7 × 10−10 A/cm2. Moreover fingerprint-type nanosized domain patterns with polydomain structures and well-defined macroscopic piezoelectric properties with a high normalized strain constant of 40 pm/V was obtained. Under in situ DC electric field, the domain evolution was investigated and 180° domain reversal was observed through piezoelectric force microscope. These global electrical properties make the current Mn-PIMNT thin films very promising in piezoelectric MEMS applications.  相似文献   

7.
Pursuing novel thermal barrier–coating materials with lower thermal conductivity and high-temperature stability can simultaneously improve the working efficiency and service temperature of a gas turbine. In this study, a series of high-entropy RE2(Y0.2Yb0.2Nb0.2Ta0.2Ce0.2)2O7 (RE = La, Nd, Sm, Gd, Dy, and Er) oxides were prepared though solid-state reaction. Through tuning the rare-earth cations, an order–disorder transition occurs from certain partially ordered weberite structure (C2221) to disordered defective fluorite structure (Fm3¯ $\bar{3}$m). All the high-entropy RE2(Y0.2Yb0.2Nb0.2Ta0.2Ce0.2)2O7 oxides possess low thermal conductivity in the range of 0.91–1.34 W m−1 K−1 at room temperature, which can be attributed to increased lattice anharmonicity and disorder, resulting in additional phonon scattering. Herein, we proved that the incorporation of heterovalent cations at B-sites in high-entropy A2B2O7 crystals is an effective strategy to reduce the thermal conductivity without compromising the decrease of oxygen vacancy. Moreover, the high-entropy RE2(Y0.2Yb0.2Nb0.2Ta0.2Ce0.2)2O7 oxides show the relatively higher thermal expansion coefficients of 10.3–10.7 × 10−6°C−1 and excellent phase stability at elevated temperatures.  相似文献   

8.
Crack-free Sm-doped Bi2Ti2O7 (Sm:BTO) thin films with strong (111) orientation have been prepared on Pt (111) substrates using a chemical solution deposition (CSD) method. The structural properties and crystallizations were studied by X-ray diffraction. The surface morphology and quality were examined using atomic force microscopy (AFM). The insulating and dielectric properties were also evaluated at room temperature. The results demonstrate that the Sm:BTO films exhibit improved electrical performances as compared to the pure Bi2Ti2O7 thin films and suggest a strong potential for utilization in microelectronics devices.  相似文献   

9.
Rare-earth pyrochlore materials are promising thermal barrier coatings materials and fundamental understanding of their thermal transport is crucial for further improving its performance. In this work, using density functional theory (DFT) method, we calculated the intrinsic lattice thermal conductivities of Ln2Sn2O7 (Ln = La, Gd) and conducted a comprehensive analysis on the mode thermal conductivity, relaxation time, Grüneisen parameters, group velocity, and specific heat, respectively. It is shown that in pyrochlore-type materials the number of the optical phonons is much larger than that of the acoustic phonon, and the thermal conductivity of acoustic phonons are suppressed, both of which increase the contribution ratio of optical phonons. Especially, through cumulative analysis, we found that the contribution of optical phonons is significant: the ratio of optical contribution is more than 50% and 64% in La2Sn2O7 and Gd2Sn2O7. This work provides a comprehensive picture illustrating the significant role of the optical phonons in the lattice thermal conduction in rare-earth pyrochlore materials, and points out an avenue to obtain low thermal conductivity in complex structural thermal insulation materials.  相似文献   

10.
In the present work we prepared Aluminum doped Zinc Oxide (AZO) thin films from powder targets. Various concentrations (W/W percentages) of Al2O3 such as1%, 2%, 3%, 4%, 5%, 6%, 7% and 8% were mixed in ZnO powder and made in the form of a 3 inch disc target. These ceramic targets are sputtered in RF magnetron sputtering unit for the deposition of AZO thin films. Optical and electrical properties are analyzed to get an optimized percentage of mixing for achieving high transparency and low resistivity. At Al2O3 percentage of 3% there is a considerable decrement in the resistivity, and at 7% there is a considerable decrease in the optical transmittance. Mobility and carrier concentration are increasing with Al2O3 percentage. Bandgap of the films is observed to be decreasing with increasing the Al2O3 percentage.  相似文献   

11.
《Ceramics International》2017,43(7):5661-5667
Hafnium oxynitride ceramics were prepared in the form of thin films by high-power impulse magnetron sputtering of Hf in various Ar+O2+N2 gas mixtures. Smooth composition control was achieved by maximizing the degree of dissociation in plasma, suppressing the importance of the difference between reactivities of undissociated O2 and N2. The application potential of the films was further enhanced by extremely high deposition rates (e.g. 230 nm/min for stoichiometric HfO2; achieved by feedback pulsed reactive gas flow control), low deposition temperatures (<140 °C) and not using any substrate bias. We focus on the relationships between elemental composition, phase structure, and optical, electrical, mechanical and hydrophobic properties of the materials. We quantify the evolution of smoothly controlled film properties along the transition from an oxide to a nitride, such as increasing extinction coefficient, decreasing electrical resistivity, increasing hardness or increasing water droplet contact angle.  相似文献   

12.
The chemical solution deposition of Mg(OH)2 thin films on glass substrates and their transformation to MgO by annealing in air is presented. The chemical solution deposition consists of a chemical reaction employing an aqueous solution composed of magnesium sulfate, triethanolamine, ammonium hydroxide, and ammonium chloride. The as-deposited films were annealed at different temperatures ranging from 325 to 500?°C to identify the Mg(OH)2-to-MgO transition temperature, which resulted to be around 375?°C. Annealing the as-deposited Mg(OH)2 films at 500?°C results in homogeneous MgO thin films. The properties of the Mg(OH)2 and MgO thin films were analyzed by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, UV–Vis spectroscopy, and by circular transmission line model. Results by X-ray diffraction show that the as-deposited thin films have a brucite structure (Mg(OH)2), that transforms into the periclase phase (MgO) after annealing at 500?°C. For the as-deposited Mg(OH)2 thin film, a nanowall surface morphology is found; this morphology is maintained after the annealing to obtain MgO, which occurred with the evident formation of pores on the nanowall surface. The assessed chemical composition from X-ray photoelectron spectroscopy yields Mg0.36O0.64 (O/Mg ratio of 1.8) for the as-deposited Mg(OH)2 film, where the expected stoichiometric composition is Mg0.33O0.67 (O/Mg ratio of 2.0); the same assessment yields Mg0.60O0.40 (O/Mg ratio of 0.7) for the annealed thin film, which indicates the obtainment of a MgO material with oxygen vacancies, given the deviation from the stoichiometric composition of Mg0.50O0.50 (O/Mg ratio of 1.0). These results confirm the deposition of Mg(OH)2 films and the obtainment of MgO after the heat-treatment. The energy band gap of the films is found to be 4.64 and 5.10?eV for the as-deposited and the film annealed at 500?°C, respectively. The resistivity of both Mg(OH)2 and MgO thin films lies around 108?Ω·cm.  相似文献   

13.
Magnetoelectric (ME) property modulation in heterostructured (Ni0.5Zn0.5)Fe2O4/Pt/Pb(Zr0.3Ti0.7)O3 (NZFO/Pt/PZT) thin films on platinized Si substrate by thermal annealing condition variation was studied. In an attempt to prevent interfacial reaction between NZFO and PZT layers during high temperature annealing, thin Pt layer was deposited which can serve as inter-diffusion barrier as well as electrode. The ferroelectric, magnetic, and ME properties of the heterostructured film were noticeably modulated due to microstructural evolution and clamping relaxation developed during thermal annealing process. Room temperature ME voltage coefficient of the heterostructured thin films was enhanced with increasing annealing temperature and reached to 29 mV/cm·Oe when annealed at 650 °C.  相似文献   

14.
《Ceramics International》2021,47(21):29748-29757
This study systematically investigated the structural, optical, and morphological evolution of Gallium oxide (Ga2O3) films deposited at different substrate temperatures on Al2O3(0001) using pulsed laser deposition (PLD). The thickness of the Ga2O3 films was standardized in order to eliminate its effect on the film properties. The effect of substrate temperature from room temperature to 600 °C on the film's transmittance, crystalline structure, chemical composition and surface morphology, was explored. The plasma species generated during the deposition of the PLD process were monitored and analyzed employing in situ optical emission spectroscopy. The deposition rate of the films decreased with increasing substrate temperature. X-ray photoelectron spectroscopy was used to detect both Ga3+ and Ga + oxidation states in all prepared films, which indicated substoichiometric Ga2O3 films deficient in oxygen. The percentage of non-lattice oxygen decreased with increasing substrate temperature. At optimal condition, mono-crystaline β-Ga2O3 was produced with a high visible and near-infrared transmittance, large grain size and smooth surface, which is suitable for the application in high-performance power electric devices and photoelectronic devices.  相似文献   

15.
Electron emission characteristic, electrical conductivity of polycrystalline mayenite (12CaO·7Al2O3) electride, formation of [Ca24Al28O64]4+(e)4 framework as a function of phase content, and microstructure have been investigated. The mayenite microstructure was investigated using high-resolution transmission microscopy which revealed the type cage structure of 12CaO·7Al2O3 partially filled by extra-framework oxygen ions. Incorporation of electrons by means of carbon ion template 12CaO·7Al2O3 produces complex structure, and an incomplete ion template 12CaO·7Al2O3 structure consisting of mixture of a [Ca24Al28O64]4+(e)4 and [Ca24Al28O64]4+(O2−)2 framework had a direct effect on the electron emission. Surface chemistry and stability of the 12CaO·7Al2O3 electride have been studied using x-ray photoelectron spectroscopy. The work function of phase pure 12CaO·7Al2O3 electride was determined from direct thermionic emission data and compared to the measurement from ultraviolet photoelectron spectroscopy (UPS). Depending on the extent of ion template of 12CaO·7Al2O3 structure, a work function of 0.9–1.2 eV and 2.1–2.4 eV has been measured and thermionic emission initiating at 600°C.  相似文献   

16.
《Ceramics International》2020,46(4):4568-4572
Gallium oxide (Ga2O3) films have been deposited on SrTiO3 (100) substrates by using the metal-organic chemical vapor deposition (MOCVD) method. Post-deposition annealing was performed at different temperatures. XRD θ-2θ scans displayed that the annealing at 1000 °C leaded to β phase Ga2O3 film with the best crystalline quality. Microstructural and chemical composition analyses revealed that this film was single crystal β-Ga2O3 with stoichiometric ratio. The epitaxial relationships were clearly determined as β-Ga2O3 (100) || SrTiO3 (100) with β-Ga2O3 [001] || SrTiO3 <011>. All of the prepared Ga2O3 samples have average transmittances in the visible range of more than 70%.  相似文献   

17.
High Tc Y1−x Yb x Ba2Cu3O7−y films were prepared on SrTiO3(100) substrates by chemical vapor deposition method. Yb1Ba2Cu3O7−y films were obtained at higher oxygen partial pressure compared with Y1Ba2Cu3O7−y films at the same deposition temperature. Tc,o (R=0) decreased about 1.5 K when Y was fully substituted with Yb. The caxis lattice parameter of Y1−x Yb x Ba2Cu3O7−y films also decreased as the amount of Yb(x) increased.  相似文献   

18.
Tantalum (Ta) and titanium (Ti) metal targets were direct current (DC) magnetron sputtered in the oxygen environment by varying its relative areas to deposit (Ta2O5)1-x- (TiO2)x (TTOx) thin films, with x = 0, 0.03, 0.06, and 0.08, onto the boron-doped p-silicon (1 0 0) and optically polished quartz substrates, at room temperature; and were annealed at 500, 600, 700, and 800 °C, for 1.5 h. The thin films annealed at and above 600 °C show the Ta2O5 structure. The leakage current density and capacitance-voltage (C–V) characteristics were measured for TTOx, x ≤ 0.08, assisted Ag/TTOx/p-Si metal– oxide– semiconductor (MOS) structures. The leakage current density was found minimum, for the films annealed at 800 °C, for all the prepared TTOx films, x ≤ 0.08. The minimum leakage current density 1.6 × 10?8 A/cm2, at 3.5 × 105 V/cm electric field, was observed for x = 0.03, annealed at 800 °C, among the prepared compositions. The prepared TTO0.03 films, annealed at 700 °C show maximum dielectric constant 39, at 1 MHz. The optical parameters, viz., refractive index (n), extinction coefficient (k), and optical band gap (Eg) of the films, with x = 0.03, prepared on quartz substrates, were determined from their optical transmittance plots. The values of n and k of the crystalline films were observed increasing from 2.123 to 2.143, and 0.099 to 0.130, respectively, at 550 nm wavelength; and Eg decreasing from 3.95 to 3.89 eV with the increasing annealing temperature, from 600 to 800 °C. Ohmic emission, in the lower electric field; Schottky and space-charge- limited current conduction mechanisms, in the intermediate to higher electric fields, were generally envisaged from the current-voltage characteristics in the prepared Ag/TTO0.03/p-Si structures.  相似文献   

19.
《Ceramics International》2021,47(20):28411-28418
The limiting temperature of an In2O3 thin film sensor is much lower than its melting point. Herein, the failure modes of In2O3 thin films at high temperatures, including sublimation and changes in composition, have been studied. The edge and surface layer sublimation rates increased dramatically at 1350 °C, indicating that it is the limiting temperature of no-protection In2O3 films. In addition, oxygen atoms will escape from In2O3 thin films at high temperatures, forming oxygen vacancies. As the main current carrier type in In2O3, the increasing number of oxygen vacancies affects the resistance of In2O3 thin film sensors. To solve these problems and promote the high temperature performance of In2O3 thin films, protection methods based on Al2O3 and ZrO2 layers have been investigated. The ZrO2 protective layer alleviated the serious considerable sublimation of In2O3 thin films at high temperatures, and the Al2O3 protective layer was beneficial for reduction the escape of oxygen atoms. Finally, different protection layers were evaluated by in-situ resistivity measurements of In2O3 thin films at high temperatures. The resistance of the In2O3 thin film resistor with a protective multilayer consisting of Al2O3 and ZrO2 remained stable at 1360 °C, verifying the protection method effectively increased the thermal stability of In2O3 thin films.  相似文献   

20.
《Ceramics International》2016,42(12):13863-13867
Anatase phase TiO2 (a-TiO2) films have been deposited on MgAl2O4(100) substrates at the substrate temperatures of 500–650 °C by the metal organic chemical vapor deposition (MOCVD) method using tetrakis-dimethylamino titanium (TDMAT) as the organometallic (OM) source. The structural analyses indicated that the TiO2 film prepared at 600 °C had the best single crystalline quality with no twins. The out-of-plane and in-plane epitaxial relationships of the film were a-TiO2(001)||MgAl2O4(100) and TiO2[100]||MgAl2O4[100], respectively. A uniform and compact surface with stoichiometric composition was also obtained for the 600 °C-deposited sample. The average transmittance of all the TiO2 films in the visible range exceeded 91% and the optical band gap of the films varied from 3.31 to 3.41 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号