首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low fracture toughness of Al2O3-based ceramics limited their practical application in cutting tools. In this work, graphene was chosen to reinforce Al2O3-WC-TiC composite ceramic tool materials by hot pressing. Microstructure, mechanical properties and toughening mechanisms of the composite ceramic tool materials were investigated. The results indicated that the more refined and denser composite microstructures were obtained with the introduction of graphene. The optimal flexural strength, Vickers hardness, indentation fracture toughness were 646.31?±?20.78?MPa, 24.64?±?0.42?GPa, 9.42?±?0.40?MPa?m1/2, respectively, at 0.5?vol% of graphene content, which were significantly improved compared to ceramic tool material without graphene. The main toughening mechanisms originated from weak interfaces induced by graphene, and rugged fractured surface, grain refinement, graphene pull-out, crack deflection, crack bridging, micro-crack and surface peeling were responsible for the increase of fracture toughness values.  相似文献   

2.
In this paper, in situ formed Ti3(Al,Sn)C2/Al2O3 composites were fabricated by sintering the mixture of Ti3AlC2 and SnO2. The Al atoms could diffuse out of the Ti3AlC2 layered structure to react with SnO2, resulting in the formation of Ti3(Al,Sn)C2 solid solution and Al2O3. When the SnO2 content was 20?wt.%, the sintered Ti3(Al,Sn)C2/Al2O3 composite exhibited the best overall mechanical properties, because of the optimized cooperative strengthening effect of solution strengthening and Al2O3 enhancement. When the SnO2 content increased up to 30?wt.%, the flexural strength and fracture toughness of Ti3(Al,Sn)C2/Al2O3 composite dramatically decreased on account of the large accumulation of generated Al2O3. Moreover, according to the SiC ball-on-flat wear tests, it was found that the wear resistance of Ti3(Al,Sn)C2/Al2O3 composites was significantly improved as the SnO2 content increased.  相似文献   

3.
《Ceramics International》2021,47(18):25497-25504
Al2O3–Ti(C,N) ceramics were fabricated via carbothermal reduction nitridation method with high-titania special-grade bauxite as the raw material. The formation mechanism of in-situ Ti(C,N) phase and its effect on the properties of materials are discussed. After nitrided at 1700 °C, Ti(C,N) phase could be formed in-situ with appropriate C/TiO2 molar ratio. Due to the residual stress field formed by Ti(C,N) particles, the path of crack propagation is changed, leading to the crack deflection and pinning. Therefore, the mechanical properties of the materials are improved by forming in-situ Ti(C,N) phase. With a C/TiO2 molar ratio of 2.2 and nitridation temperature of 1700 °C, Al2O3–Ti(C,N) ceramic with a hardness of 13.9 GPa, a fracture toughness of 8.28 MPa m1/2 and a flexural strength of 387 MPa could be fabricated.  相似文献   

4.
Silicon nitride materials containing 1–5 wt% of hexagonal boron nitride (micro-sized or nano-sized) were prepared by hot-isostatic pressing at 1700 °C for 3 h. Effect of hBN content on microstructure, mechanical and tribological properties has been investigated. As expected, the increase of hBN content resulted in a sharp decrease of hardness, elastic modulus and bending strength of Si3N4/BN composites. In addition, the fracture toughness of Si3N4/micro BN composites was enhanced comparing to monolithic Si3N4 because of toughening mechanisms in the form of crack deflection, crack branching and pullout of large BN platelets. The friction coefficient was not influenced by BN addition to Si3N4/BN ceramics. An improvement of wear resistance (one order of magnitude) was observed when the micro hBN powder was added to Si3N4 matrix. Mechanical wear (micro-failure) and humidity-driven tribochemical reaction were found as main wear mechanisms in all studied materials.  相似文献   

5.
《Ceramics International》2020,46(11):18859-18867
Cutting performance and failure mechanisms of graphene nano-platelets (GNPs) reinforced ceramic cutting tool ATG (short for Al2O3/Ti(C,N)/GNPs) in continuous dry turning of Inconel 718 up to a cutting speed of 500 m/min were investigated in comparison with those of commercial Sialon tool KY1540. The results show that ATG tool shows similar cutting performance with KY1540 tool at the speed range of 150–300 m/min, but greatly outperforms KY1540 when the cutting speed range of 400–500 m/min for higher hardness, wear resistance, chemical inertness and fracture toughness. Flank wear, notch wear, chipping and flaking are the reasons for tool failure of ATG. The wear modes are related to cutting speed, and adhesion wear is found to be the dominant failure mechanism of ATG. It is believed that GNPs play a significant role in improving mechanical properties and tribological properties which contributed to excellent resistance to abrasive wear and fracture. Turning Inconel 718 in dry and high speed via using ATG ceramic tool is an efficient and eco-friendly method.  相似文献   

6.
《Ceramics International》2022,48(15):21071-21083
Ti(C,N)-based cermets with a composite structure were designed to maintain the balance between strength and toughness. The cermets with the composite structure comprised coarse particles and the matrix, and the coarse particles included fine hard phases compounded in the matrix. A new hard phase grain with a four-layered structure was found. The composite structure of the cermet can contribute to high toughness, and the grain with the four-layered structure in the composite structure imparts high strength and toughness. As the granule size increases, the fracture toughness of the cermets increased, but the hardness and transverse rupture strength (TRS) showed the opposite trend. The toughening mechanisms of the cermet were crack branching, crack bridging, crack deflection, and formation of tear ridges.  相似文献   

7.
Owing to the good physicochemical compatibility and complementary mechanical properties of Ti3SiC2 and Al2O3, Ti3SiC2/Al2O3 composites are considered as ideal structural materials. However, TiC and TiSi2 typically coexist during the synthesis of Ti3SiC2/Al2O3 composites through an in-situ reaction, which adversely affects the mechanical properties of the resulting composites. In this study, Ti3SiC2/Al2O3 composites were prepared via in-situ hot pressing sintering at 1450 °C. Ge, which was used as a sintering aid, improved the purity and mechanical properties of the Ti3SiC2/Al2O3 composites. This is because Ge replaced some of the Si atoms to compensate the evaporation loss of Si to form Ti3(Si1-xGex)C2, which showed a crystal structure similar to that of Ti3SiC2. Furthermore, the molten Ge accelerated the diffusion reaction of the raw materials, increasing the overall density of the Ti3SiC2/Al2O3 composites. The optimum Ge amount for improving the mechanical properties of the composites was found to be 0.3 mol. The flexural strength, fracture toughness, and microhardness of the composite with the optimum Ge amount were 640.2 MPa, 6.57 MPa m1/2, and 16.21 GPa, respectively. The formation of Ti3(Si1-xGex)C2 was confirmed by carrying out X-ray diffraction, energy dispersive spectroscopy, and transmission electron microscopy analyses. A model crystal structure of Ti3(Si1-xGex)C2 doped with 0.3 mol Ge was established by calculating the solid solubility of Ge.  相似文献   

8.
《Ceramics International》2019,45(13):16504-16511
The aim of this study was to improve the mechanical properties of Al2O3 ceramics by the addition of Y2O3-stabilized ZrO2 whiskers (designated as Al2O3/YSZW composite) through the flux method and hot-pressing technology. The effect of YSZW content on their microstructure, phase composition and transformability, mechanical properties, and wear resistance was systematically investigated. The Al2O3/YSZW composites containing 10 wt% YSZW exhibited the best mechanical performance, including the highest content of YSZW tetragonal phase and transformability as well as the largest values in their relative density (99.5%), hardness (1969 HV), fracture toughness (9.57 MPa m1/2) and flexural strength (855 MPa). The strengthening and toughening of the Al2O3/YSZW composites were attributed to the YSZW tetragonal-monoclinic phase transformation as well as the whiskers reinforcing effect. Furthermore, the Al2O3/YSZW composites also showed the highest friction and wearing properties.  相似文献   

9.
《Ceramics International》2017,43(3):3448-3452
Ti/Al2O3 composites with different volume percentages of Pr6O11 added (0–12.0  vol.%) were prepared by pressureless sintering at 1600 °C for 1.5 h. The influences of Pr6O11 on the composition, microstructure and mechanical properties of the composites were characterized and investigated. The results showed that Pr6O11 could promote the sintering of the composites by generating some new interfacial reaction products, such as AlTiO2, Pr2Ti2O7 and PrAlO3. Pr6O11 could also inhibit the production of TiAl and Ti3Al by the same mechanism. Additionally, Pr6O11 changed hexagonal alumina to tetragonal alumina. The latter could improve the mechanical properties of the composites by the effects of crack deflection and particle pullout when it was present in proper amounts. Composites showed satisfactory comprehensive properties when the content of Pr6O11 was no more than 3.0 vol.%.  相似文献   

10.
Al2O3 particle-reinforced Cr2AlC in situ composites were successfully fabricated from powder mixtures of Cr3C2, Cr, Al, and Cr2O3 by a reactive hot-pressing method at 1400 °C. A possible synthesis mechanism was proposed to explain the formation of the composites in which Al2O3 was formed by the aluminothermic reaction between Al and Cr2O3, meanwhile, Cr3C2, Al, together with Cr reacted to form Cr2AlC in a shortened reaction route. The effect of Al2O3 addition on the microstructure and mechanical properties of Cr2AlC/Al2O3 composites was investigated. The results indicated that the as-sintered products consisted of Cr2AlC matrix and Al2O3 reinforcement, and the in situ formed fine Al2O3 particles dispersed at the matrix grain boundaries. The flexural strength and Vickers hardness of the composites increased gradually with increasing Al2O3 content. But the fracture toughness peaked at 6.0 MPa m1/2 when the Al2O3 content reached 11 vol.%. The strengthening and toughening mechanism was also discussed.  相似文献   

11.
《Ceramics International》2020,46(14):22391-22396
In order to explore the effects of non-stoichiometric defects on the dielectric properties of composite ceramics, 70 wt% (Ba0.5Sr0.5)xTiO3-30 wt%ZnGa2O4 ((BS)xT50-ZG, x = (Ba + Sr)/Ti = 0.99, 1.00, 1.01 and 1.05) composite ceramics were fabricated by the traditional sintering technique. The association between structure and dielectric properties has been studied. The results show that the distortion of the crystal lattice brought by the partial Schottky defects, namely [V″Ba,Sr–V˙˙O]× and [V′′′′Ti–2V˙˙O]×, induces a decrease in the Curie temperature of (BS)xT50-ZG composite ceramics. The orientation of the elastic dipoles brought by oxygen vacancies causes the pinning of the domain walls, which reduces the dielectric loss at low frequencies. Tunability is related to the dipole polarization caused by [V″Ba,Sr–V˙˙O]× and [V′′′′Ti–2V˙˙O]× defect complexes. In addition, compared with the composite ceramic with x = 1, the Q values of the composite ceramics with x < 1 and x > 1 decreases due to the deterioration of the microstructure homogeneity and the enhancement of the disorder of the B-site cations in (BS)xT50.  相似文献   

12.
《Ceramics International》2023,49(13):21471-21478
In this study, novel (Ti,Hf)(C,N) ceramics with varying hafnium contents were fabricated via carbothermal reduction–nitridation and subsequent spark plasma sintering. The influence of Hf addition on the mechanical properties, wear properties, and corrosion resistance of the (Ti,Hf)(C,N) ceramics was systematically studied. The introduction of Hf promoted the sintering densification of the ceramics in the sintering process. The prepared (Ti,Hf)(C,N) ceramics exhibited excellent mechanical and wear properties owing to refinement and solution-strengthening mechanisms. The (Ti0.9,Hf0.1)(C0.5,N0.5) ceramic demonstrated higher Vickers hardness and fracture toughness, measuring 1997 HV5 and 4.28 MPa m1/2, respectively, compared to the pure Ti(C0.5,N0.5) ceramic which exhibited values of 1635 HV5 and 3.94 MPa MPa m1/2. The wear scar depth of the (Ti0.9,Hf0.1)(C0.5,N0.5) ceramic sample was 57.36% to that of the Ti(C0.5,N0.5) ceramic. Additionally, the addition of Hf improved the corrosion resistance of (Ti,Hf)(C,N) ceramics in a 0.5 M NaOH solution. The potential applications of (Ti,Hf)(C,N) ceramics include machining tools and wear-resistant parts.  相似文献   

13.
《Ceramics International》2020,46(10):15998-16007
Comprehensive study on effect of YAG amount on densification, creep resistance and room-temperature mechanical properties of Al2O3-YAG composite pressureless sintered at 1600 °C was conducted. The main goal was to optimize the amount of YAG in order to fabricate a composite with improved creep resistance and sufficiently good room-temperature mechanical properties. The composite was made by mixing a commercially available Al2O3 powder with fine YAG powder obtained by glycine-nitrate combustion synthesis starting from aluminum nitrate and yttrium nitrate. Increased driving force for sintering of fine YAG powder allowed fabrication of dense Al2O3-YAG composite with up to 30 vol% YAG. The presence of YAG was found to be very effective in improving creep resistance of Al2O3-YAG composite. Large Y3+ ions blocked diffusion along Al2O3 grain boundaries, reduced diffusivity and therefore enhanced creep resistance of Al2O3-YAG composite which continuously increased as the YAG amount increased. Тhe presence of YAG was also found to improve mechanical properties such as hardness and elastic modulus. The improvement of these properties was ascribed to increased density of Al2O3-YAG composites owing to high sintering activity of YAG powder. While fracture strength of the composite can be as high as that of monolithic Al2O3, fracture toughness of composite decreased continuously as the YAG content increased. The decrease was ascribed to transgranular fracture of both YAG and Al2O3 grains in samples containing larger amounts of YAG. The proper balance between fracture toughness and creep resistance was found in composite containing 18 vol% YAG which had considerably improved creep resistance accompanied by a relatively small decrease in fracture toughness.  相似文献   

14.
《Ceramics International》2023,49(6):9173-9184
The effects of Al2O3 content on the sintering behaviour, microstructure, and physical properties of Al2O3/vitrified bonds (SiO2–Al2O3–B2O3–BaO–Na2O–Li2O–ZnO–MgO) and Al2O3/vitrified bond cubic boron nitride (CBN) composites were systematically investigated using X-ray diffraction, differential scanning calorimetry, dilatometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. Various amounts of Al2O3 promoted the formation of BaAl2Si2O8 and γ-LiAlSi2O6, increasing the relative crystallinity of the Al2O3/vitrified composite from 85.0 to 93.2%, resulting in residual compressive stress on BaAl2Si2O8, thereby influencing the thermal behaviour and mechanical properties of the Al2O3/vitrified composite. The bulk density, porosity, flexural strength, hardness, and thermal conductivity of 57.5 wt% Al2O3 sintered at 950 °C were 3.12 g/cm3, 6.1%, 169 MPa, 90.5 HRC, and 4.17 W/(m·K), respectively. The coefficient of thermal expansion of the bonding material was 3.83 × 10?6 °C?1, which was comparable to that of CBN, and the number of N–Al bonds were increased, which boosted the flexural strength of the Al2O3/vitrified CBN composite to 81 MPa. The excellent mechanical properties, compact structure, and suitable interfacial bonding state with the CBN grains of the Al2O3/vitrified composite make it a promising high-performance bonding material for superhard abrasive tools.  相似文献   

15.
Fully dense Si3N4 materials with 1 wt.% (~ 1.5 vol.%) and 2 wt.% (~ 3.0 vol.%) h-BN nanosheets were prepared by spark plasma sintering at 1750 °C with the dwell of 7 min under a pressure of 50 MPa in a vacuum. BN nanosheets with different dimensions were prepared by ultrasound-assisted liquid phase exfoliation of h-BN powder, followed by centrifugation at different speeds (1000 rpm and 3000 rpm). The addition of BN nanosheets hindered the particle rearrangement stage of sintering, which resulted in the delayed α→β phase transformation of Si3N4. To study a direct effect of BN nanosheets on the mechanical properties of Si3N4, the results were compared to the monolithic Si3N4 with similar grain size and α/β-Si3N4 ratio. The addition of 2 wt.% h-BN nanosheets (1000 rpm) increased both the fracture toughness (~ 26 %) and the strength (~ 45 %) of Si3N4, when compared to the monolithic Si3N4 with similar microstructure.  相似文献   

16.
Ti(C,N)-WC-Mo2C-TaC-Co-Ni cermets with various content of La2O3 were prepared by gas-pressure sintering at 1450 °C. The effects of ultrafine La2O3 additions (0, 0.05, 0.1 and 0.2 wt%) on the microstructure, mechanical properties, wear resistance and cutting performance of cermets were explored. In the microstructure of cermets, the La2O3 particles and dissolved La element in binder phases were observed, which could inhibit the dissolution-precipitation process of ceramics phases during liquid-sintering. Furthermore, the La2O3 could absorb and react with the impurity Al element with low melting point from raw powders, avoiding the appearance of liquid phase at the low temperature and partial overheating during sintering process. These mechanisms could inhibit the abnormal growth of Ti(C,N) core-(Ti,W,Mo,Ta)(C,N) rim structures effectively, leading to the thinning of brittle rim phases and coarsening of wear-proof Ti(C,N) particles. The decrease of proportion of brittle rim phase and ultrafine Ti(C,N) particles promoted the fracture toughness. The increase of proportion and grain size of Ti(C,N) improved the hardness, wear resistance and cutting performance significantly. However, the excessive addition of La2O3 would result in the agglomeration of La2O3, causing the sharp decline of mechanical properties and cutting performance. The cermet with 0.1 wt% La2O3 addition possessed the optimal mechanical properties with Vickers hardness, transverse rupture strength and fracture toughness of 1710 (HV30) Kgf/mm2, 2480 MPa and 11.7 MPa m1/2, respectively.  相似文献   

17.
徐广平  何江荣  宋一华  魏赛  冯伟  谢志鹏 《耐火材料》2013,47(3):184-186,189
为提高Al2O3陶瓷的高温力学性能,采用热压烧结工艺(烧结温度1 800℃,烧结压力20 MPa,保温1 h)制备了Al2O3-ZrB2-SiC复相陶瓷(简称AZS),并研究了ZrB2含量对Al2O3基陶瓷高温抗折强度和抗热震性的影响。结果表明:1)在Al2O3基陶瓷中加入第二相ZrB2能有效改善材料的高温抗折强度和高温强度保持率,在1 000和1 200℃时,加入20%体积分数ZrB2的AZS陶瓷试样具有最高的高温抗折强度,而加入24%体积分数ZrB2的AZS陶瓷试样具有最高的高温强度保持率。2)AZS陶瓷的抗热震性能优于纯Al2O3陶瓷。经100℃温差急冷后,加入20%体积分数ZrB2的AZS陶瓷具有最高的残余强度,比纯Al2O3陶瓷提高了17.2%;经300和500℃温差急冷后,加入24%体积分数ZrB2的AZS陶瓷都具有最高的残余强度,比Al2O3陶瓷分别提高了35.3%和20.9%。  相似文献   

18.
Two series of Ti (C, N)-based cermets, one with TiC addition and the other with TiN addition, were fabricated by conventional powder metallurgy technique. The initial powder particle size of the main hard phase components (Ti (C, N), TiC and TiN) was nano/submicron-sized, in order to achieve an ultra-fine grade final microstructure. The TiC and TiN addition can improve the mechanical properties of Ti (C, N)-based cermets to some degree. Ultra-fine grade Ti (C, N)-based cermets present a typical core/rim (black core and grayish rim) as well as a new kind of bright core and grayish rim structure. The average metallic constituent of this bright core is determined to be 62 at% Ti, 25 at% Mo, and 13 at% W by SEM–EDX. The bright core structure is believed to be formed during the solid state sintering stage, as extremely small Ti (C, N)/TiC/TiN particles are completely consumed by surrounding large WC and Mo2C particles. Low carbon activity in the binder phase will result in the formation (Ni2Mo2W)Cx intermetallic phase, and the presence of this phase plays a very important role in determining the mechanical properties of TiN addition cermets.  相似文献   

19.
《Ceramics International》2023,49(18):30240-30247
Al2O3/ZrO2(Y2O3) directionally solidified eutectic ceramics (DSECs) with different Y2O3 addition were prepared. Three polymorphs of ZrO2: m-ZrO2, t-ZrO2 and c-ZrO2 appeared and disappeared in order with the increase of Y2O3 addition, the effects of Y2O3 addition amount on the mass fraction of ZrO2 polymorphs were quantitatively analyzed. The gradual decrease of area fraction and average size of colony was attributed to the increase of constitutional undercooling region, the variation of interphase spacing in the colonies was explained via selection mechanism of dendrite tip. The maximum hardness and fracture toughness were 18.35 GPa and 8.55 MPa m1/2 obtained at 9 mol% and 3 mol% Y2O3 addition, respectively. The hardness was determined by the mass fraction of m-ZrO2 phase, the area fraction of intercolony and the residual compressive stress, and the toughening mechanisms were composed of microcrack toughening, t-m transformation toughening and residual stress toughening.  相似文献   

20.
Monolithic B4C, B4C–TiB2, and B4C–TiB2–graphene nanoplatelets (GNPs) were fabricated by hot pressing (HP) at 1900 °C for 1 h under an axial pressure of 30 MPa. The microstructures and mechanical and electrical properties of the B4C composites were investigated. The results show that the GNPs are distributed homogeneously in B4C-based ceramic composites. Compared with monolithic B4C, the TiB2–GNPs-containing B4C composite exhibits an approximately 68 % increase in flexural strength and a 169 % increase in fracture toughness due to the synergistic effects of TiB2 particles and GNPs. The toughening mechanisms mainly include TiB2 crack deflection, crack branching, transgranular fracture and GNPs crack deflection, crack bridging, and GNPs pull-out. Additionally, the electrical conductivity of the B4C composite reinforced with dual fillers is three orders of magnitude higher than that of monolithic B4C due to the establishment of a conductive network. The addition of GNPs can efficiently connect the isolated conductive TiB2 particles in the B4C matrix and provides an additional channel for electron migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号