首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2023,49(8):11821-11828
Phosphor-converted laser lighting has become a credible candidate in next-generation high-brightness white lighting, and the configuration types of phosphor converters have a great influence on the opto-thermal performances of laser lighting. In this work, we proposed nitride phosphor-in-glass films (PIGFs) for high-brightness laser lighting and investigated the opto-thermal performances of PIGFs in transmissive (T) and reflective (R) modes. The Y-PIGFs were prepared by low-temperature sintering a mixture of yellow-emitting La3Si6N11:Ce3+ (LSN) phosphor and borosilicate glass, and the Y/R-PIGFs were achieved by incorporating red-emitting CaAlSiN3:Eu2+ (CASN) phosphor into the Y-PIGFs. The PIGFs display higher thermal stability and luminescence intensity than the raw phosphors. By tailoring the thickness of Y-PIGFs, the Y-PIGF with a film thickness of 75 μm achieves the luminous efficacy of 199.4 lm/W and 91.5 lm/W in the T mode and R mode, respectively, and the PIGF realizes the highest luminous efficacy of 207.8 lm/W by collecting backward light in the T mode. At the CASN/LSN ratio of 0.20, the Y/R-PIGF enables high-quality white light with a color rendering index (CRI) higher than 89. Furthermore, under 4.82 W laser excitation, the central temperatures of Y-PIGF in the T-mode and R-mode are only 98 °C and 67.4 °C, respectively. The results indicate that the PIGFs enable high-performance white laser lighting with distinct opto-thermal properties by adjusting configuration types.  相似文献   

2.
To achieve high color rendering and proper color temperature, a red color converter is essential for phosphor-converted white lighting devices. CaAlSiN3:Eu2+ (CASN) is a highly suitable red phosphor for white light-emitting diodes. However, it can be hardly used in high-power laser lighting due to poor thermal/chemical performance of the phosphor/silicone resin mixture. A series of all-inorganic CASN-based phosphors (e.g., composite ceramic and phosphor-in-glass) were developed to avoid the use of resin. However, new challenges emerged: none of them showed sufficient luminous efficacy (i.e., >50 lm/W) and adequate saturation-threshold (i.e., >30 W or 10 W/mm2). Here, we report a facile fabrication of CASN/glass composite films using a simple and efficient blade-coating method. Upon 450 nm excitation, the resultant composite film presents a high internal quantum efficiency of ~83%, comparable to that of pristine CASN powder (~90%). When irradiated with a blue laser, the composite film shows a record high luminous efficacy of 82 lm/W. Furthermore, its saturation threshold was investigated in high power and high power density mode, respectively. When measured in high power mode, it shows a high saturation threshold over 29.7 W (1.75 W/mm2), thus achieving a high luminous flux of 1576 lm; when measured in high power density mode, it shows a saturation threshold of ~10.2 W/mm2 (1.13 W). With abovementioned excellent properties, the CASN/glass composite film has great potential for use in high-power and high color rendering laser lighting.  相似文献   

3.
《Ceramics International》2022,48(24):36531-36538
Laser diodes (LDs) combined with color converters have been considered as new-generation high-brightness white light source. Whereas, the luminescence of phosphor materials is easily influenced by accumulated heat originating from laser-driven conversion. In order to alleviate the thermal effect under focused laser of high-power, we proposed a high-luminescence laser-driven color converter of heat-conducting La3Si6N11:Ce3+ (LSN:Ce) phosphor-in-glass (PiG). The LSN:Ce nitride phosphor exhibits excellent opto-thermal property. The LSN:Ce-PiG-AlN converter was fabricated by sintering the LSN:Ce-PiG layer (~50 μm) upon a AlN ceramic substrate. Due to excellent luminescence of LSN:Ce and high thermal conductivity of AlN, the LSN:Ce-PiG-AlN converter achieves a luminous flux (LF) of 376.1 lm, a luminous efficiency (LE) of 158 lm/W, and a correlated color temperature (CCT) of 4462 K under 2.39 W laser excitation. In addition, the temperature of PiG film surface still stays low level (<150 °C) when driven by 4.82 W laser irradiation. The proposed LSN:Ce-PiG-AlN converter is a high-performance and promising phosphor converter for high-luminescence white laser lighting.  相似文献   

4.
One major benefit of laser lighting is the possibility to achieve very high luminance. In phosphor-converted laser lighting systems, a blue (pump) laser can be focused into a very small spot. However, after excitation of the phosphor, the white-light-emitting area usually increases considerably, which reduces the luminance parameter substantially. Herein, we design and investigate a highly scattering YAG:Ce/glass composite film with a porous microstructure. Both the glass/phosphor interfaces and the introduced pores act as scattering centers, which can confine the emission area effectively. The relationship between the spot size and the microstructure (porosity, phosphor-particle size, thickness) is elucidated. Under excitation with blue laser, the composite film shows a uniform white-light emission with high luminous efficacy (230 lm/W) and high saturation threshold (> 40 W/mm2), thus achieving a high luminous exitance of ~1239 lm/mm2. With above excellent properties, the designed composite films show great potential for use in high-luminance laser lighting.  相似文献   

5.
To address the problems of low luminous efficacy and poor thermal stability of reflective phosphor-in-glass (PiG) converter, a thermally robust and highly reflective PiG-boron nitride (BN)-aluminum nitride (AlN) converter was designed for enabling ultrahigh efficiency laser-driven white lighting. Benefiting from the ingenious sandwich design with the thermally conductive AlN substrate and highly reflective BN-glass interface, a La3Si6N11:Ce3+ (LSN) PiG-BN-AlN converter achieves white light emission with a high luminous efficacy of 214.2 lm/W under the 3.15 W blue laser excitation, which is the best recorded value for the reflective PiG-based converters thus far, and the surface temperature of LSN PiG is low to 126 °C. Furthermore, the LSN PiG-BN-AlN converter incorporates CaAlSiN3:Eu2+ (CASN) red phosphor to enable high-quality white light emission with high luminous flux and good color quality. The results reveal that the designed PiG-BN-AlN converter provides a promising strategy for achieving ultrahigh efficiency laser-driven white lighting.  相似文献   

6.
Thermally robust red-emitting phosphor ceramics are urgently required for laser lighting and displays with high luminance and better color saturation. The most promising CaAlSiN3:Eu ceramics have a low thermal conductivity of 4.2 W m?1 K?1 and a small luminance saturation of 0.5 W, making it hard to be used under high power laser irradiation. In this work, we incorporated AlN into the CaAlSiN3:Eu ceramic to produce red-emitting AlN-CaAlSiN3:Eu composite phosphor ceramics by spark plasma sintering. The fully densified phosphor ceramics have the highest thermal conductivity reported so far (53.5 W m?1 K?1), which is about 13 times higher than the reported one. The luminance saturation of the composite ceramics occurs at a high threshold of 4.2 W under blue laser excitation, enabling them to be used for high power laser lighting. This work provides an idea of tackling the microstructure of nitride phosphor ceramics and of preparing thermally robust red-emitting color converters.  相似文献   

7.
In this work, a series of Al2O3–Ce:YAG phosphor powders were synthesized by regulating the excess Al3+ of (Y,Ce)3Al5O12 via coprecipitation method for the first time, where Al3+, Ce3+, and Y3+ elements were uniformly distributed. With the increase of Al3+ content, the morphology of the powders changed from wormlike shapes to flaky shapes, and Y3Al5O12 phases had a tendency to convert to YAlO3 phases. The x wt.% Al2O3–(Y0.999Ce0.001)3Al5O12 (x = 20, 30, 40, 50, 60, and 70) composite phosphor ceramics (CPCs) were obtained by vacuum sintering (1775°C × 10 h), where Al2O3 and Ce:YAG phases were also well-distributed. When the Al2O3 content was 30–40 wt.%, the average grain size of Al2O3 was close to that of Ce:YAG. A solid-state laser lighting device was constructed by a 450 nm laser source and CPCs in a reflection mode. By adjusting the laser power, the correlated color temperature (CCT) values of white laser diodes (LDs) were achieved close to the standard white light of 6500 K. Impressively, the white LDs equipped with the 40 wt.% Al2O3-containing CPCs showed the optimum CCT of 6498 K (color coordinates: 0.31 and 0.38), as well as a high luminous flux of 1169 lm and efficiency of 166 lm/W at the LD power of 7.05 W. This work has provided a potential idea to optimize the composition uniformity of Al2O3–Ce:YAG CPCs as also to explore their excellent performance in the application of white laser lighting.  相似文献   

8.
《Ceramics International》2022,48(2):1682-1689
Stable color converters exhibiting high color rendering index have drawn researchers’ attention for their applications in high-quality white laser lighting. In this study, we develop the multi-color phosphor-in-glass (PIG) with the weight ratio of green-emitting (Y3Al3.08Ga1.92O12:Ce3+) to red-emitting (CaAlSiN3:Eu2+) phosphor powders (10/1–18/1) by low temperature co-sintering method. The obtained composite material displays an outstanding optical and thermal performance, including a high internal quantum efficiency of 84.2%, a high transparency of 45% in the visible region and a low thermal quenching (it remains 86% at 448 K). By integrating 450 nm blue laser diodes with optimized multi-color PIG, the white light with a maximum luminous flux of 258 lm and a luminous efficiency of 137 lm/W is achieved for the first time. Additionally, considering the white balance, by tailoring the weight ratio of green-emitting to red-emitting phosphor and the thickness of PIG, the 14/1 PIG at fixed thickness of 0.75 mm produces pure white light with ultra-high color rendering index of 95.2 and a high luminous efficiency of 120.9 lm/W under power density of 2.39 W/mm2 irradiation. The above superior characteristics imply that the multi-color PIG is an ideal candidate for high-quality white laser lighting applications.  相似文献   

9.
An Al2O3/YAG: Ce3+ ceramic phosphor was fabricated for high-flux laser lighting using the digital lighting process (DLP)-based 3D printing method for the first time. The photocurable ceramic suspension for 3D printing was prepared by blending well-treated Al2O3/YAG: Ce3+ composite powders with photosensitive resin monomers and photo-initiators. The printing parameters, debinding and sintering processes were designed delicately to fabricated the dense sub-millimeter-sized cylinder ceramic with high dimensional accuracy. The ceramic showed excellent luminescence property under blue laser excitation with a threshold of 20.7 W/mm2, higher than that prepared via dry-pressing followed by vacuum sintering. The luminescence properties and the microstructures of both ceramics were further comparatively investigated to find the possible interpretations for improvement of laser flux for the 3D-printed ceramic. The present work indicated that the new developed 3D printing method was promising for preparing luminescent ceramics for high-flux laser lighting in a rapid, effective, low-cost and precision-controlled manner.  相似文献   

10.
《Ceramics International》2023,49(5):7927-7934
PiGF (Phosphor-in-glass film) with high color rendering was successfully prepared at a low sintering temperature. The influence of sintering temperature, the mass ratio of glass and phosphor, and different fluorescent layers on the luminescence properties of PiGF was systematically studied. It is of note that the “cyan cavity” is significantly reduced due to the addition of “cyan phosphor” (BaSi2O2N2:Eu2+). Under 455 nm blue light laser excitation, PiGF has the highest luminous efficiency of 94.55 lm/W and a white light composite PiGF with a correlated color temperature of 5500 K and a color rendering index of 95 can be obtained. In short, this work shows that the PiGF has great potential application in white light laser lighting.  相似文献   

11.
The aim of this study is to investigate a thermally robust white color converter for high-power solid-state lighting, especially laser lighting. Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ phosphor-in-glass samples (LuAG&CASN-PiGs) were synthesized via a low temperature co-sintering technique. The prepared LuAG&CASN-PiGs exhibited remarkably high internal quantum efficiency of 87 %. Tunable warm white light-emitting diodes (wLED) were acquired by tailoring the sample thicknesses and phosphor contents. The optimized sample showed a high luminous flux of 183.68 lm under a blue laser diodes (LDs). In addition, the chromaticity of white LDs based on the LuAG&CASN-PiGs shifted from cool to warm white by changing the sample thicknesses. High quality white light in wLDs was achieved (Ra=95). More importantly, the constructed LuAG&CASN-PiG converted LDs with a heat sink exhibited the luminous efficiency of 216.79 lm W?1. The results revealed that the prepared LuAG&CASN-PiG had great potential for application in solid-state laser light sources.  相似文献   

12.
The research and development of orange-emitting phosphor ceramics with excellent performance are significant for improving the optical quality of laser lighting and developing-related emerging applications. For the first time, we prepared an orange-emitting MgO–(Sr,Ba)3SiO5:Eu composite phosphor ceramic with high thermal conductivity, high thermal stability, and excellent luminescence properties. The thermal conductivity of the phosphor ceramic is as high as 32 W/(m K), and the luminescence intensity decreases by only 20% at 200°C, both of which are better than other orange-emitting phosphor ceramics reported so far. The luminous efficacy of the phosphor ceramic (41.6 lm/W) is also close to the highest value of orange-emitting phosphor ceramics until now. In addition, we also explored the application prospects of the composite phosphor ceramics in automotive turn signals and warm white laser lighting. This work provides inspiration for the preparation of other excellent orange-emitting phosphor ceramics in the future.  相似文献   

13.
To investigate the luminance saturation in high-power blue-laser-driven solid state lighting, the Y3Al5O12: Ce (YAG)-based PiG films was co-fired with a high thermally conductive sapphire substrate. When the PtG ratio or the thickness of the PiG film increases, the luminance saturation becomes worse and both of the luminous flux and luminous efficacy decrease. With an additional sapphire substrate coated with an anti-reflection layer on one side and a blue-pass filter on another side attached to the PiG film, the film shows an improvement in luminous flux and efficacy, and produces the white light with a luminous flux of 1709 lm, a luminous efficacy of 211 lm W?1 and a correlated color temperature of 6602 K under the maximum (10.3 W mm?2) blue laser light excitation. It indicates that the PiG film could be applied in high power laser-driven solid state lighting when its microstructure is carefully tailored.  相似文献   

14.
Even though CaAlSiN3:Eu2+ (CASN) is, in many regards, a highly suitable red phosphor that can be used in white light-emitting diodes, it can hardly be used in high-power laser-lighting because of its low saturation-threshold. By using CASN-based composite ceramics, it is possible to increase the threshold but new difficulties appear. These include complex and expensive synthesis, while the saturation-threshold still has room for improvement. In this study, we prepare a CASN/glass composite film, using an industry-friendly blade-coating method. The film has a high internal quantum efficiency of 79%, which suggests low conversion loss. Under 1.17 W blue laser excitation, a high luminous efficacy of 21.0 lm/W can be obtained. More importantly, the composite film shows a record-high saturation-threshold of more than 12.7 W (∼320 W/cm2) blue laser excitation. With these outstanding properties, CASN/glass composite films may open doors towards commercially viable red color converters for high-power laser-lighting applications.  相似文献   

15.
《Ceramics International》2022,48(10):13626-13633
YAG:Ce3+ PiG film cannot produce high color-rendering laser lighting due to the deficiency in red spectral component, but adding nitride-based red phosphors usually leads to dramatic decrease of brightness and efficiency as a result of their obvious luminance saturation. In this work, a sandwich structured PiG (SS-PiG) film was created using green-emitting YAGG:Ce3+ and orange-emitting GdYAG:Ce3+ phosphors, where two types of PiG films were separately co-fired on each surface of a sapphire substrate. The color-rendering index of SS-PiG film can reach 81.4 upon blue laser excitation, improved by 24.3% when compared with that of YAG:Ce3+ PiG film (65.5). Driven by blue laser diodes with a flux density of 7.69 W mm-2, the SS-PiG film shows a luminous emittance of 1362 lm mm-2, which is 179% higher than traditional multilayer structured PiG film (489 lm mm-2). The SS-PiG film enables to enhance both of color rendition and luminance of laser-phosphor-converted lighting.  相似文献   

16.
Phosphor‐in‐glass (PiG) thick film was fabricated on a borosilicate glass substrate using a conventional screen printing method and employing phosphosilicate glass to allow low‐temperature sintering. The vehicle content and sintering temperature were optimized to form a thick film with a thickness of ~50 μm. Commercial yellow (Y3Al5O12:Ce3+) and red (CaAlSiN3:Eu2+) phosphors were successfully incorporated within the glass matrix and then sintered at 550°C. Color‐tunable white LEDs were achieved using the PiG thick films as a color converter by varying the glass to phosphor (GtP) ratio. The high luminous efficacy of up to ~120 lm/W and high color rendering index of up to 89 in combination with the thermal quenching property prove the practical feasibility of the PiG thick films for high‐power/high‐brightness LED applications.  相似文献   

17.
In order to meet the increasing demand for high-power laser diode lighting and displays, phosphor converters with high-brightness and high-directionality ought to be constructed to enhance the luminance and luminous efficacy. However, the pores formed during the sintering of phosphor ceramics affect the scattering effect and directionality of light. Therefore, porosity optimization and pore size regulation need to be explored. In this work, a series of Ce:YAG ceramics with various porosities and pore sizes were prepared. The influences of porosity and pore size on the microstructure, light confinement ability, and optical properties of Ce:YAG ceramics were studied. The ceramic phosphor with a porosity of 10 vol.% and a pore size of 3 μm exhibits a good spot confinement ability and shows a high luminous flux value of 3430 lm and a central luminance (1669 592 cd/m2) under blue laser excitation. The 10 vol.% Ce:YAG ceramic phosphor with a pore size of 5 μm has the highest emission intensity and gives a maximum luminous efficacy of 268 lm/W and a luminous flux of 4020 lm under 30 W/mm2 blue laser excitation. Thus, the porous Ce:YAG ceramics are expected to be a promising candidate for high-brightness laser lighting and projection applications.  相似文献   

18.
《Ceramics International》2021,47(21):30514-30522
A reliable yellow phosphor converter that can be efficiently excited by a 405 nm bluish violet laser is in high demand for laser illumination applications. A NaAlSiO4:Eu2+ phosphor with a quantum efficiency reaching 92% was obtained using LTA zeolite as the raw material. NaAlSiO4:Eu2+ ceramics with suitable porosities for laser illumination were prepared from the phosphor powders via spark plasma sintering. The ceramics lost only 2% of the quantum efficiency compared to the powders, maintained good thermal quenching properties (30% drop at 150 °C), and showed good thermal conductivity (2.02 W‧m−1‧K−1). The NaAlSiO4:Eu2+ ceramic with 405 nm bluish violet lasers, with the increase in laser power density to 9.15 W/mm2, exhibited an increasing luminous flux (23.83–70.26 lm) and maintained a stable luminous efficacy (47.7–46.8 lm/W), and the temperature distribution of the ceramic remained uniform and stable under long-time laser irradiation. This indicates that the nepheline-phase NaAlSiO4:Eu2+ ceramic is a promising material for laser illumination.  相似文献   

19.
Laser lighting is considered as a next-generation high-power lighting due to its high-brightness, directional emission, and quasi-point source. However, thermally stable color converter is an essential requirement for white laser diodes (LDs). Herein, we proposed a stable and efficient phosphor-in-glass (PiG) in which YAG:Ce3+ and MFG:Mn4+ phosphors were embedded into tellurite glass matrixes. The glass matrixes with low-melting temperature and high refractive index were prepared by designing their composition. The luminescence of YAG:Ce3+ PiGs was adjusted by controlling phosphor thickness. Aiming to compensate for red emission, multi-color PiGs were realized by stacking MFG:Mn4+ layers on YAG:Ce3+ layer. The phosphor crystals are chemically stable and maintain intact in the glass matrix. Furthermore, white LDs were fabricated by combining the PiGs with blue LDs. As the phosphor thickness increases, the chromaticity of white LDs shifts from cool to warm white, and the white LDs exhibit excellent thermal stability under different excitation powers.  相似文献   

20.
《Ceramics International》2022,48(20):29547-29553
Red light-emitting phosphors are important to the field of plant lighting. Therefore, it is necessary to further optimize phosphor materials. Herein, we synthesized a sequence of phosphor LaTiSbO6:Mn4+ (LTS:Mn4+). Due to the 2E to 4A2 transition, LTS:Mn4+ phosphors can emit red light in the range of 620–780 nm, with an emission peak at 687 nm. Chemical unit cosubstitution (substituting W6+ - Al3+/W6+ - Ga3+ for Ti4+ - Sb5+) was used as a method to enhance the luminescence properties of LTS:Mn4+. When the substitution ratio of W6+ - Ga3+ and W6+ - Al3+ reached 0.1% and 0.75%, respectively, the luminescence intensity increased to 204% and 182%. Using the LTS:Mn4+, W6+, Ga3+ phosphor and a 470 nm blue chip to fabricate a pc-LED device, the electroluminescence (EL) spectrum is well matched with the phytochrome absorption range. Therefore, the LTS:Mn4+ phosphor will be very promising for plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号