首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2019,45(12):15082-15090
The formation and compositions of grain boundary layers are very important factors to improve the electrical properties of CaCu3Ti4O12 (CCTO) ceramics. In present work, the dielectric and nonlinear properties of the CCTO ceramics are enhanced by controlling the Cu-rich phase degree at grain boundary layers. The dense CCTO ceramics were prepared successfully through mixing the nanometer and micrometer powders and using the cold isostatic pressing process. The average grain size of these CCTO ceramics is about 30.71(±11.76) ∼ 62.01(±32.16) μm, and their grain microstructures show the Cu-rich phases at grain boundary layers. The CCTO ceramics with the mass ratios of nanometer and micrometer powders 7:3 display a giant dielectric constant of 5.4 × 104, low dielectric loss of 0.048 at 103 Hz, enhanced nonlinear coefficients of 11.12, as well as the noteworthy breakdown field of 4466.17 V/cm. The complex impedance spectroscopy results indicate that the giant dielectric behavior is due to the electrically heterogeneous grain/grain boundary characteristics from internal barrier layer capacitance (IBLC) model. The lower dielectric loss and the higher breakdown field are attributed to the high resistance grain boundary layers with the Cu-rich phase. The improved nonlinear properties are related to the increased Schottky barrier height at grain boundary. This work may provide a potential way to design the CCTO ceramics with excellent electrical properties from the viewpoint of controlling the response of the Cu-rich phase grain boundary.  相似文献   

2.
Reduction of dielectric loss for CCTO ceramics is a prerequisite for their applications. Considering internal barrier layer capacitance effect, improving the capacitance and grain boundary resistance is an effective way to reduce dielectric loss. Therefore, more conductive Ti3+ and Cu+ ions were introduced to grains by adding carbon to ceramic bodies, improving the permittivity of CCTO ceramics. Annealing was performed to increase the grain boundary resistance. The dielectric loss of the CCTO ceramics thus prepared, which maintain a giant permittivity, is significantly reduced. Specifically, the CCTO ceramic with carbon addition, which was sintered at 1080 °C for 8 h and air annealed at 950 °C for 2 h, exhibits a giant permittivity of about 2.50(5)×104 and a low dielectric loss of less than 0.050(2) from below 20 Hz to 50 kHz at room temperature. Meanwhile, its dielectric loss at 1–10 kHz is less than 0.050(2) from below room temperature to about 100 °C.  相似文献   

3.
《Ceramics International》2017,43(5):4366-4371
CaCu3−xRuxTi4O12 (x=0, 0.03, 0.05 and 0.07) electronic ceramics were fabricated using a conventional solid-state reaction method. The microstructure, grain sizes and dielectric properties as well as the impedance behaviours of the ceramics were carefully investigated. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) results indicate that ruthenium (Ru) dopant inhibits the growth of grains during the sintering process by promoting the formation of high melting point oxides of Ca and Ti. The study on the frequency dependence of dielectric properties suggests that Ru doping shifts the dielectric loss peak of CCTO to a much lower frequency, thereby reducing the dielectric loss of CCTO at high frequency (f>1.0 MHz) accordingly. When doped with proper amount of Ru, the high frequency dielectric loss of CCTO is reduced to a very low value (tanδ<0.05). Our study conclusively suggests that Ru-doped CCTO, with sufficiently low dielectric loss and decent permittivity, presents potential applications at high frequency.  相似文献   

4.
《Ceramics International》2019,45(10):12994-13003
The temperature and dc bias stability of the dielectric constant and loss tangent of CaCu3Ti4O12 samples sintered under different oxygen atmospheres are discussed. The results suggest that the metal-oxygen vacancy related defects not only provide the charge carriers for the conduction (defect doping) but also contribute to the huge permittivity in the way of defect dipoles repositioning under charge carrier hopping. The charge localization in a specific copper-oxygen vacancy defect complex is the reason of the huge and stable permittivity and low dielectric loss in the middle temperature range, 90 K-200 K (20 Hz), while the implementation of the large barrier layer height needs a contribution by the titanium oxygen vacancy related trap charges in the grain boundaries, which also lead to a second permittivity stable range in a higher temperature range 200 K–300 K.  相似文献   

5.
Electrical performances are strongly associated with the electrical heterogeneity of grains and grain boundaries for CaCu3Ti4O12 (CCTO) ceramics. In this work, the dielectric ceramics of 0.1Na0.5Bi0.5TiO3-0.9BaTiO3 (NBT-BT) doped CCTO were fabricated by a conventional solid-state reaction method, and the ceramics were sintered at 1100 °C for 6 h. Relatively homogeneous microstructures are obtained, and the average grain sizes are characterized about 0.9∼1.5 μm. Impressively, a significantly enhanced breakdown field of 13.7 kV/cm and a noteworthy nonlinear coefficient of 19.4 as well as a lower dielectric loss of 0.04 at 1 kHz are achieved in the 0.94CCTO-0.06(NBT-BT) ceramics. It is found that the improved electrical properties are attributed to the increased grain boundary resistance of 3.7 × 109 Ω and the Schottky barrier height of 0.7 eV. This is originated from the NBT-BT compound doping effect. This work demonstrates an effective approach to improve electrical properties of CCTO ceramics by NBT-BT doping.  相似文献   

6.
《Ceramics International》2022,48(15):21906-21912
The miniaturization and high capacitance of electronic components are driving the development of high-performance electronic ceramic materials. In this work, we design a new strategy to achieve satisfactory dielectric properties with low loss, colossal permittivity, and a high breakdown electric field (Eb) in Al-doped Y2/3Cu3Ti4O12 (YCTO) ceramics prepared by a solid-phase synthesis method. The dielectric loss decreased with Al doping in the YCTO. The dielectric constant and the Eb were improved upon Al doping. With Al doping levels of 0.03 and 0.05, Y2/3Al0.03Cu2.97Ti4O12 and Y2/3Al0.05Cu2.95Ti4O12 ceramics displayed, respectively, a suppressed loss tangent of about 0.028 and 0.031, a high dielectric constant of approximately 9540 and 11792, and an Eb of approximately 4.32 and 4.54 kV/cm. The improved dielectric properties of the produced ceramics were closely linked to enhanced grain boundaries resistance. This study explores the physical mechanism behind the high performance of the YCTO-based ceramics, and also provides theoretical support for the application of devices comprising YCTO and related materials.  相似文献   

7.
We report on high dielectric constant (8.3 × 103, 104 Hz), low dielectric loss (0.029, 104 Hz) as well as fine grain size (∼840 nm) achieved in pure CaCu3Ti4O12 (CCTO) ceramics through a combination of sol–gel method, spark plasma sintering and annealing process. By adjusting the sintering temperature and annealing conditions, the composition variations, valence states and microstructures of CCTO ceramics are systematically studied, which provide direct clues in understanding the origin of their excellent dielectric response. Through the studies on the dielectric, impedance, modulus and conductivity properties of CCTO ceramics, a modified brick-layer model based on two interfacial polarizations originating from sub-grain boundary and grain boundary barriers is proposed to explain their dielectric behaviors. The high dielectric constant of CCTO ceramics is mainly dominated by the sub-grain contribution; and the reduced dielectric loss is attributed to the decreases of electrical conductivity and relaxation loss.  相似文献   

8.
《Ceramics International》2017,43(17):14659-14665
This work presents the results of Zr oxide doping of a CaCu3Ti4O12 (CCTO) ceramic prepared by a solid-state reaction. Different stoichiometries (ZrO and ZrO2) and grain sizes (micro- and nanoparticles) were added as dopants at concentrations of 0.5 and 1.0 wt%. Zr-doping controls the grain size growth, leading to a reduction of the grain size as observed by scanning electron microscopy. For both dopant concentrations, all of the samples exhibited lower dielectric loss and a smaller dielectric constant than those of undoped CCTO. The sample doped with 0.5% of the non-stoichiometric ZrO exhibits a dielectric constant over 3200 and a dissipation factor of 0.02 at 1 kHz. The impedance spectroscopy analysis confirms that the decrease of dielectric loss is mainly due to an increase in resistivity at grain boundaries, which is attributed to the suppression of oxygen-loss promoted by dopants.  相似文献   

9.
A chemical solution processing method based on sol-gel chemistry (SG) was used to synthesize (1-x)Y2/3Cu3Ti4O12-xSrTiO3 (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) ceramics successfully. The 0.85Y2/3Cu3Ti4O12-0.15SrTiO3 ceramics sintered at 1050 °C for 20 h showed fine-grained microstructure and high dielectric constant (ε′  1.7 × 105) at 1 kHz. Furthermore, the 0.85Y2/3Cu3Ti4O12-0.15SrTiO3 ceramics appeared distinct pseudo-relaxor behavior. Two electrical responses were observed in the combined modulus and impedance plots, indicating the presence of Maxwell-Wagner relaxation. Sr vacancies and additional oxygen vacancies had substantial contribution to the sintering behavior, an increase in grain growth, and relaxation behaviors in grain boundaries. The contributions of semiconducting grains with the nanodomain and insulating grain boundaries (corresponding to high-frequency and low-frequency electrical response, respectively) played important roles in the dielectric properties of (1-x)Y2/3Cu3Ti4O12-xSrTiO3 ceramics. The occurrence of the polarization mechanism transition from the grain boundary response to the electrode one with temperature change was clearly evidenced in the low frequency range.  相似文献   

10.
《Ceramics International》2023,49(7):10213-10223
In this work, we have systematically studied the effects of La3+/Sr2+ dopants on the crystal structure, microstructure, dielectric response and electrical properties of (Ca0.9Sr0.1)1-xLa2x/3Cu3Ti4O12 (x = 0, 0.025, 0.05 and 0.075) ceramics. XRD results show that the lattice parameter increases with the increase in the La3+ content. SEM micrographs illustrate that a small amount added of La3+ can reduce the grain size of CCTO during sintering. With increasing La3+ content, the grains grow larger. Dielectric measurements indicated that all doped samples synthesized by the solid-state reaction exhibit giant dielectric constants ε'>104 over a large frequency range (10 Hz to 1 MHz) and at any temperature below 600 K. In particular, the ceramic with x = 0.05 exhibits a colossal dielectric permittivity ~5.49 × 104; which increases by about 50% compared to that of the undoped ceramic. In addition, the doped ceramic also presents a low dielectric loss ~ 0.08 at 20 °C and 0.6 kHz. The giant dielectric properties of these samples can be explained by the (IBLC) model.  相似文献   

11.
The 3D distribution of self-assembled stacked quantum dots (QDs) is a key parameter to obtain the highest performance in a variety of optoelectronic devices. In this work, we have measured this distribution in 3D using a combined procedure of needle-shaped specimen preparation and electron tomography. We show that conventional 2D measurements of the distribution of QDs are not reliable, and only 3D analysis allows an accurate correlation between the growth design and the structural characteristics.  相似文献   

12.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   

13.
CaCu3-xNixTi4O12 (x?=?0, 0.05, and 0.10) powders were synthesized using a solid state reaction method. Phase structure and microstructure analyses revealed that all sintered CaCu3-xNixTi4O12 ceramics were of a pure phase. The CaCu3Ti4O12 ceramics had a dense microstructure and grain sizes were enlarged by doping with Ni2+. Interestingly, the dielectric permittivity was significantly enhanced, whereas the loss tangent was greatly suppressed to ~0.046–0.034 at 1?kHz. All sintered ceramics exhibited non-Ohmic characteristics. Clarification of the influences of DC bias showed that the dielectric permittivity and loss tangent values were increased by DC bias. The resistance of grain boundaries and the associated conduction activation energy of CaCu3-xNixTi4O12 ceramics were reduced as the DC bias voltage increased. Therefore, the observed non-Ohmic behavior and significantly enhanced dielectric properties should be closely related to variation in the Schottky barriers at the grain boundaries.  相似文献   

14.
Black iron-chromium (Fe-Cr) bearing oxide pigments are generally utilised as effective colourants in a wide variety of applications. However, in the case of their use within ZnO-containing glazes, they yield an undesirable brown colour instead of expected black colour. In order to understand the colour change in this system, we report the use of focused ion beam (FIB) sample preparation technique followed by the use of analytical transmission electron microscopy (TEM) characterisation techniques. According to the results, the formation of a reaction layer between the pigment and glaze was identified with an average composition of Zn0.48Fe0.79Cr1.32O4. Additionally, the valance of Fe was determined as 3+ in the pigment grain, whereas 2+ in the reaction layer and the glaze, respectively. Therefore, it was concluded that the colour change is occurring as result of the valence variation of Fe, the formation of Zn0.48Fe0.79Cr1.32O4 compound and the outward diffusion of Fe into the glaze.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号