首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以Zr (NO3)4·5H2O与Y(NO3)3·6H2O为主要原料,以柠檬酸为缓冲溶液,采用沉淀法制备电解质用8YSZ粉体,利用涂覆法在水系流延技术制备的半电池上涂覆LSM阴极得到单电池.运用XRD、TEM、激光粒度仪、SEM和电化学工作站等测试手段对粉体的物相、结构和粒度分布及单电池的结构与电性能进行了表征.研究结果表明,分散均匀、颗粒尺寸为50~100 nm、立方相8YSZ电解质在1375℃烧成具有高致密度,单电池在750℃时,以氢气和3%水蒸汽为燃料气,空气为氧化气的条件下,获得了开路电压为1.13 V,最大功率为0.93 w/cm2,欧姆阻抗为0.19Ωcm2和极化阻抗为0.65 Ωcm2的电性能.  相似文献   

2.
分别以Ni-YSZ中空纤维为阳极和Sm0.5Sr0.5Fe0.8Cu0.2O3–δ–Sm0.2Ce0.8O1.9(SSFCu-SDC)为阴极制备了微管固体氧化物燃料电池(SOFC)。利用扫描电子显微镜(SEM)、电化学工作站表征了微管单电池的显微结构与电化学性能。SEM分析表明,采用相转化法制备的Ni-YSZ中空纤维阳极呈特殊的非对称结构,主要由中间海绵状结构和内外两侧的指孔状多孔结构构成。通过真空辅助浸渍涂覆法和与阳极共烧技术在阳极支撑体上制备了致密的YSZ电解质膜和SDC过渡层。分别采用湿氢为燃料和静态环境空气为氧化剂测定了制备的微管单电池在650~750℃时的电化学性能。结果表明,该微管单电池具有高的输出性能,在750、700℃和650℃时的最大功率密度分别可达到485.9、382.7mW/cm2和260.3mW/cm2。  相似文献   

3.
采用均匀沉淀法制备了花瓣状NiO粉体,对该花瓣状NiO进行YSZ(Y2O3稳定的ZrO2)修饰,以提高花瓣状NiO粉体的耐高温性,进而构建纳微结构的阳极。采用离子浸渍法制备了YSZ修饰的花瓣状NiO粉体(NiO-YSZ粉体),通过热重--差热分析、X射线衍射、扫描电子显微镜、能谱仪、透射电子显微镜等分析手段对该粉体的热性能、物相、微观形貌、晶粒大小等进行了表征。分别采用商业NiO(颗粒状)粉体和自制花瓣状NiO-YSZ粉体制备了电解质支撑型单电池的阳极,该单电池的组成为NiO+8YSZ‖8YSZ‖LSM+8YSZ,并测试了其电化学性能。结果表明:采用花瓣状NiO-YSZ粉体制备的阳极单电池在操作温度为在750、800和850℃下最大功率密度分别为0.094、0.151和0.376W/cm2,且相对应的电极极化阻抗分别为2.496、1.589和0.814Ω·cm2;而采用商业NiO制备的阳极的单电池在操作温度为在750、800和850℃下的最大功率密度分别为0.024、0.072和0.149W/cm2,且相对应的电极极化阻抗分别为4.265、2.306和1.688Ω·cm2。  相似文献   

4.
采用水系流延(含双层水系流延)技术流延电解质/阳极(阳极功能层),叠压共烧技术制备大规格阳极支撑型半电池,利用丝网印刷技术印刷LSM-YSZ阴极,经烧成后获得单电池,对比研究了阳极功能层对SOFC单电池电性能的影响。采用SEM、电子负载及电化学工作站对单电池结构和电性能进行了表征。研究结果表明,阴极、电解质、阳极功能层和阳极支撑层之间结合紧密,阳极功能层的结构均匀,平均孔径为1.12μm。在单电池中增加阳极功能层,单电池以H_2+3%水蒸气为燃料气,空气为氧化气在750℃的最大功率密度由0.21W/cm~2变为0.31W/cm~2,极化阻抗由0.98Ω·cm~2降至0.69Ω·cm~2,单电池放电100h后衰减率由6.94%降至2.63%,衰减率降低了62.1%。  相似文献   

5.
采用多层水系流延和共烧方法制备具有阳极功能层的单电池。阳极基底、阳极功能层、电解质层和阴极层分别为Ni-YSZ、Ni-ScSZ、YSZ和LSM-ScSZ。在H2/空气气氛中,分别在700、750、800℃测试具有阳极功能层的单电池,其最大功率密度分别为:0.30、0.55W/cm2和0.8W/cm2;其对应的电池欧姆电阻(R0)分别为0.39、0.30cm2和0.19cm2。电池的极化电阻则分别为1.28、0.91cm2和0.62cm2。采用相同工艺制备无阳极功能层的单电池,其在700、750、800℃的最大功率密度分别为0.21、0.31W/cm2和0.56W/cm2,对应的R0为0.41、0.39cm2和0.28cm2。电池的极化电阻为1.40、1.27cm2和0.91cm2。这说明采用的多层水系流延和共烧法制备的固体氧化物燃料电池的阳极功能层能有效减小电池的活化极化,从而提高单电池的电化学性能。  相似文献   

6.
采用海藻酸钠自组装法制备了具有定向直通孔道的氧化钇稳定氧化锆(YSZ)支撑体,向多孔支撑体内部浸渍Ni纳米粒子得到固体氧化物燃料电池的阳极。结果表明:YSZ支撑体的孔径随固相含量的增大而减小,同时也随着CaCl2溶液浓度的增大而减小。使用氢气为燃料、空气为氧化剂,Ni–YSZ/YSZ/LSM–SDC电池在650℃的开路电压在1 V以上,800℃时的最大功率密度为225 m W/cm2。通过调节阳极的孔隙率及电解质厚度有望大幅度提高电池的输出性能,实现直通孔陶瓷在固体氧化物燃料电池上的应用。  相似文献   

7.
以Ni(NO3)2·6H2O、CO(NH2)2和乙二醇为原料,采用水热法制备纳米Ni O粉体,并将其应用于固体氧化物燃料电池阳极中,采用XRD、激光粒度仪、TEM和电化学工作站分别对粉体的物相、粒度分布、形貌和单电池的电性能进行了表征。研究结果表明,利用水热法制备了纯度高、分散性好的纳米Ni O粉体。将其用于固体氧化物燃料电池的阳极中,该单电池以氢气为燃料,空气为氧化气,在750℃的最大功率密度0.66W/cm2。  相似文献   

8.
王乐莹  罗凌虹  吴也凡  程亮  石纪军  余永志 《硅酸盐学报》2012,40(4):542-543,544,545,546,547
采用直接加入CeO2粉和通过Ce(NO3)3溶液包裹NiO粉2种方式对阳极Ni–氧化钇稳定型氧化锆(yttria stabilized zirconia,YSZ)进行修饰,分别研究其对固体氧化物燃料电池(solid oxide fuel cell,SOFC)性能的影响,并与不添加CeO2的电池进行对比研究。以氢气为燃料气、在750℃对单电池进行电性能测试,采用X射线衍射仪、场发射扫描电镜和能谱仪对阳极的物相组成和断面形貌进行表征,通过透射电镜观察CeO2对NiO颗粒的包裹形貌。结果表明:通过Ce(NO3)3包裹NiO粉的方法所制备的电池,最大功率密度为0.938W/cm2。其添加的CeO2能有效地阻止Ni颗粒烧结,增强Ni在YSZ网络结构表面的分散,提高电池性能。  相似文献   

9.
用柠檬酸溶胶-凝胶法合成了Ce0.85Gd0.15O2-δ(CGO),用共沉淀法合成了掺摩尔分数为11%Sc2O3稳定的ZrO2(scandium oxide-stabilized zirconia,ScSZ)电解质材料.通过X射线衍射和透射电镜对电解质材料的物相、形貌和成分进行表征.结果表明:CGO和ScSZ在各自的煅烧温度下均形成了单-的立方萤石结构晶态;ScSZ颗粒的粒径约为20nm.用共压法分别制备了以NiO-CGO阳极支撑的CGO单层电解质和ScSZ/CGO复合电解质的基体,并在基体上涂覆阴极制作单电池.在650~800℃范围内测试单电池的电性能.结果表明:ScSZ/CGO双层电解质电池的开路电压和最大功率密度均高于单层CGO电解质电池;在800℃电流密度和功率密度达到最大值,分别为677.5 mA/cm2和197.3 mW/cm2.说明SeSZ/CGO双层电解质有效地提高了电池的性能.  相似文献   

10.
提出一种实心多孔支撑体全膜化微型固体氧化物燃料电池(micro solid oxide fuel cell,μSOFC)设计模型.电池用氧化钇部分稳定的氧化锆[(ZrO2)0.97(Y2O3)0.03,partially stabilized zirconia,PSZ]多孔陶瓷作为支撑体,在其上制备NiO-YSZ阳极层,分别采用离心和浸渍两种成膜工艺制备YSZ电解质膜,以La0.8Sr0.2MnO3-YSZ复合材料为阴极,对组装好的单电池进行了电化学性能测试.在850℃和800℃时,离心沉积工艺制备的单电池最大输出功率密度分别为286 mW/cm2和254 mW/cm2,而浸渍涂布法制备单电池的最大输出功率密度则分别达到572 mW/cm2和388 mW/cm2.电化学阻抗谱显示;电极极化是影响电池性能的主要因素.  相似文献   

11.
以Ni(NO3)2·6H2O为主要原料,氨水为沉淀剂,采用沉淀法制备草酸镍.以草酸镍作为SOFC阳极材料.通过XRD、DTA-TG、SEM和电化学工作站等测试手段分别对粉体物相、热综合分析及电池的结构与电性能进行了表征.研究结果表明,利用沉淀法制备的粉体为单斜晶系的Ni2C2O4·2H2O,以NiC2O4· 2H2O作为阳极材料,具有很高的催化活性,使得单电池在H2燃料气下750℃的开路电压为1.05V,最高功率密度为1.32W/cm2.  相似文献   

12.
采用海藻酸钠自组装法制备了具有定向直通孔道的氧化钇稳定氧化锆(YSZ)支撑体,向多孔支撑体内部浸渍Ni纳米粒子得到固体氧化物燃料电池的阳极。结果表明:YSZ支撑体的孔径随固相含量的增大而减小,同时也随着CaCl_2溶液浓度的增大而减小。使用氢气为燃料、空气为氧化剂,Ni–YSZ/YSZ/LSM–SDC电池在650℃的开路电压在1 V以上,800℃时的最大功率密度为225 m W/cm~2。通过调节阳极的孔隙率及电解质厚度有望大幅度提高电池的输出性能,实现直通孔陶瓷在固体氧化物燃料电池上的应用。  相似文献   

13.
韩敏芳  焦成冉  熊洁 《硅酸盐学报》2012,40(10):1507-1514
8%(摩尔分数,下同)Y2O3稳定的ZrO2(8YSZ)是固体氧化物燃料电池(SOFC)中最常用的电解质材料,本文研究了在8YSZ基体中加入n%Li2O(n=0,0.25,0.50,1.00,1.50,1.70,2.00,2.50,3.00)后(记为n%Li2OYSZ)对其晶相结构、晶格常数、烧结性能、微观形貌、电导率及其作为SOFC电解质性能的影响。结果表明,Li2O中的Li+可以固溶到YSZ的晶格内使其晶格常数减小;Li2O的加入量n〈1.70时,瓷体在烧结过程中不会发生相变。加入少量的Li2O(n=0.25,0.50)可以提高YSZ的致密度和电导率,0.25%Li2OYSZ和0.50%Li2OYSZ样品800℃的电导率分别高达0.030 2 S/cm和0.027 6 S/cm,分别是纯YSZ的1.35和1.24倍;当Li2O含量n≥1.00时,相同条件下烧结体致密度随Li2O加入量的增大而逐渐减小;当n≥1.70时,样品在烧结过程中虽然出现相变,但在高于1400℃可以烧结致密,并得到纯立方相YSZ。将1250℃烧结制得的0.25%Li2OYSZ和0.50%Li2OYSZ作为SOFC电解质的单电池,800℃时的开路电压高于1.0V,说明YSZ中没有出现电子电导,具有比纯YSZ为电解质的单电池更高的性能输出,表现出了良好的应用前景。  相似文献   

14.
研究了BaO-CaO-Al2O3-B2O3-SiO2(BCAS)玻璃在大面积平板式固体氧化物燃料电池(IT-SOFC)测试应用及性能。采用热膨胀仪、X射线衍射仪、扫描电子显微镜对在不同时间热处理情况下玻璃性能及微观结构影响进行表征。结果表明:在750℃,热处理0、50、100h后,BCAS玻璃的热膨胀系数分别为11.4×10-6、11.3×10-6与11.2×10-6 K-1,与电解质YSZ、阳极Ni-YSZ、金属连接板Crofer22APU的热膨胀系数相匹配。玻璃在热处理后析出针状的BaSiO3,BaCaSiO4与BaAl2Si2O8晶体。采用水系流延成型制备玻璃封接环并应用于大面积单电池的性能测试。以纯H2为燃料,O2为氧化气体,单电池在连续测试280h、750℃至常温热循环10次之后的开路电压为1.19V,电池的最大功率密度为0.42W/cm2。测试后的微晶玻璃与YSZ、阳极结合紧密,界面无裂纹及孔洞,且具有较好的化学稳定性。  相似文献   

15.
积碳是限制直接碳氢燃料电池阳极发展的瓶颈问题。本文采用浸渍法,在固体氧化物燃料电池Ni/YSZ阳极上制备纳米Ru层。采用扫描电子显微镜(SEM)和能谱(EDS)对阳极成分和结构进行表征发现:显微结构良好的Ru催化层和纳米级Ru颗粒均匀的分散于Ni-YSZ阳极内部。以甲烷为燃料,单电池在750℃的温度下,浸渍了0.67 mol%Ru的Ru-Ni-YSZ||YSZ||Ag单电池获得最大功率密度可达374 mW/cm~2。电池恒电流200 mA/cm~2条件下进行运行,电压维持在0.85 V连续运行20 h没有发生降低。相较于未浸渍的单电池,添加了Ru层的电池的电性能及抗积碳性能获得明显提高。  相似文献   

16.
采用柠檬酸自蔓延燃烧法合成了Sr0.95Ti0.05Co0.95O3-δ(STC)阴极粉体和Sm0.2Ce0.8O1.9(SDC)电解质粉体,将STC与SDC粉体按质量比7:3混合得到复合阴极。通过X射线衍射(XRD)、直流四端子法和热膨胀仪表征了样品的化学相容性、电导率和热膨胀系数。XRD表明,STC在900℃能够得到立方纯钙钛矿结构,复合阴极STC-SDC在工作温度区间内具有很好的化学相容性;在650℃空气气氛下STC-SDC与SDC之间的界面极化阻抗仅为0.05Ω·cm2。制备了阳极支持型(Ni O-SDC│SDC│STC-SDC)单电池,在450~650℃范围内以湿润的H2(3%水蒸汽)为燃料气,空气为氧化剂测试了单电池的性能。结果表明:阳极支撑的单电池共烧1 350℃可以得到致密的电解质层和多孔的电极,而且650℃时单电池开路电压0.82V,最大输出功率为721 m W/cm2。结果预示,在以SDC为电解质的中低温固体氧化物燃料电池(IT-SOFC)中,STC-SDC是一个很有前途的复合阴极材料。  相似文献   

17.
用机械混合方法,在8%(摩尔分数,下同)Y2O3稳定的ZrO2(8%in mole yttria stabilized zirconia,8YSZ)中添加ZnO量分别为0,1%,2%,3%,4%,在不同温度下常压烧结制备了ZnO:8YSZ电解质。研究了烧结温度和ZnO含量对ZnO:8YSZ样品的烧结性、致密度、弯曲强度和电导率的影响。由ZnO:8YSZ电解质作为支撑组装了单电池,对电池的性能进行测试和评价。结果表明:在8YSZ中添加ZnO能改善8YSZ材料的烧结性,1400℃烧结2h的4%ZnO:8YSZ样品的致密度达99.9%,3%ZnO:8YSZ样品的弯曲强度超过200MPa,获得明显提高。4%ZnO:8YSZ样品在800℃下的电导率达1.68×10-2S/cm。在相同工作条件下,ZnO:8YSZ单电池比8YSZ单电池具有更好的工作性能和更高的效率,以3%ZnO:8YSZ单电池性能最好。  相似文献   

18.
采用流延工艺制备了NiO-8%Y2O3/ZrO2(YSZ)阳极支撑三层一体化结构单电池,在此基础上采用浸渍工艺在多孔YSZ基体上低温制备了高活性阴极La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF).研究发现:降低电极制备温度可以得到微观形貌可控、分布均匀的纳米电极,并且避免了电极与基体间的反应:通过控制浸渍次数,制备了不同LSCF含量的电池;随着浸渍量的增加,电极的极化电阻显著下降;在800℃时,LSCF质量分数为45%的电池的功率密度高达1090 mW/cm2,同时电池稳定运行90h,表现出了很好的稳定性.  相似文献   

19.
为研究甲烷在固体氧化物燃料电池中操作稳定性,分别采用共沉淀法和柠檬酸溶胶.凝胶法制备了10%CuO-Ce0.15Zr0.85O2催化剂,并以此为阳极催化剂、LSM为阴极制成了YSZ电解质支撑的SOFC单电池.用XRD对材料进行表征;用SEM对阳极,阴极进行表征.以甲烷为燃料对单电池发电性能进行测试,研究了两种不同方法制备的Cu-Ce-Zr-O阳极催化剂的抗积炭性能.相对于共沉淀法,溶胶-凝胶法制备的阳极结构和发电性能都要优于前者.长期稳定性方面,共沉淀法和溶胶.凝胶法制备的Cu-Ce-Zr-O/YSZ阳极都较传统的Ni-YSZ阳极更能够长期稳定运行.  相似文献   

20.
采用柠檬酸–硝酸盐自蔓延燃烧法分别合成了双钙钛矿结构的SmBaCo2O5+δ(SBCO)阴极粉体和萤石型Sm0.2Ce0.8O1.9(SDC)电解质粉体,按3:2的质量比混合上述粉体研磨后得到复合阴极。利用X射线衍射仪研究化学相容性,直流四端子法测量电导率,热膨胀仪测量热膨胀系数;构建阳极支撑型单电池(Ni-SDC|SDC|SBCO-SDC)并进行了性能测试,用扫描电子显微镜观察电池的断面微结构,交流阻抗谱记录界面极化。结果表明:SBCO与SDC在1 000℃无相互作用;450~800℃,复合阴极的电导率在369~234 S/cm之间;SDC的加入降低了复合阴极的热膨胀系数;单电池具有理想的微观结构,阳极|电解质|阴极各界面彼此接触良好,650℃时极化电阻仅为0.031.cm2;以H2为燃料气(含体积分数3%水蒸气),空气为氧化剂,650℃时电池的开路电压为0.77 V,输出功率最大值为640 mW/cm2。预示着SBCO-SDC是中温固体氧化物燃料电池有潜力的阴极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号