首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface properties are often hypothesized to be important factors in the development of safer forms of nanomaterials (NMs). However, the results obtained from studying the cellular responses to NMs are often contradictory. Hence, the aim of this study was to investigate the relationship between the surface properties of silica nanoparticles and their cytotoxicity against a murine macrophage cell line (RAW264.7). The surface of the silica nanoparticles was either unmodified (nSP70) or modified with amine (nSP70-N) or carboxyl groups (nSP70-C). First, the properties of the silica nanoparticles were characterized. RAW264.7 cells were then exposed to nSP70, nSP70-N, or nSP70-C, and any cytotoxic effects were monitored by analyzing DNA synthesis. The results of this study show that nSP70-N and nSP70-C have a smaller effect on DNA synthesis activity by comparison to unmodified nSP70. Analysis of the intracellular localization of the silica nanoparticles revealed that nSP70 had penetrated into the nucleus, whereas nSP70-N and nSP70-C showed no nuclear localization. These results suggest that intracellular localization is a critical factor underlying the cytotoxicity of these silica nanoparticles. Thus, the surface properties of silica nanoparticles play an important role in determining their safety. Our results suggest that optimization of the surface characteristics of silica nanoparticles will contribute to the development of safer forms of NMs.  相似文献   

2.
With the increase in use of nanomaterials, there is growing concern regarding their potential health risks. However, few studies have assessed the role of the different physical characteristics of nanomaterials in allergic responses. Here, we examined whether intranasally administered silica particles of various sizes have the capacity to promote allergic immune responses in mice. We used nanosilica particles with diameters of 30 or 70 nm (nSP30 or nSP70, respectively), and conventional micro-sized silica particles with diameters of 300 or 1000 nm (nSP300 or mSP1000, respectively). Mice were intranasally exposed to ovalbumin (OVA) plus each silica particle, and the levels of OVA-specific antibodies (Abs) in the plasma were determined. Intranasal exposure to OVA plus smaller nanosilica particles tended to induce a higher level of OVA-specific immunoglobulin (Ig) E, IgG and IgG1 Abs than did exposure to OVA plus larger silica particles. Splenocytes from mice exposed to OVA plus nSP30 secreted higher levels of Th2-type cytokines than mice exposed to OVA alone. Taken together, these results indicate that nanosilica particles can induce allergen-specific Th2-type allergic immune responses in vivo. This study provides the foundations for the establishment of safe and effective forms of nanosilica particles.  相似文献   

3.
Because of their useful chemical and physical properties, nanomaterials are widely used around the world - for example, as additives in food and medicines - and such uses are expected to become more prevalent in the future. Therefore, collecting information about the effects of nanomaterials on metabolic enzymes is important. Here, we examined the effects of amorphous silica particles with various sizes and surface modifications on cytochrome P450 3A4 (CYP3A4) activity by means of two different in vitro assays. Silica nanoparticles with diameters of 30 and 70 nm (nSP30 and nSP70, respectively) tended to inhibit CYP3A4 activity in human liver microsomes (HLMs), but the inhibitory activity of both types of nanoparticles was decreased by carboxyl modification. In contrast, amine-modified nSP70 activated CYP3A4 activity. In HepG2 cells, nSP30 inhibited CYP3A4 activity more strongly than the larger silica particles did. Taken together, these results suggest that the size and surface characteristics of the silica particles determined their effects on CYP3A4 activity and that it may be possible to develop silica particles that do not have undesirable effects on metabolic enzymes by altering their size and surface characteristics.  相似文献   

4.
Amorphous silica nanoparticles (nSP) have been used as a polishing agent and/or as a remineralization promoter for teeth in the oral care field. The present study investigates the effects of nSP on osteoclast differentiation and the relationship between particle size and these effects. Our results revealed that nSP exerted higher cytotoxicity in macrophage cells compared with submicron-sized silica particles. However, tartrate-resistant acid phosphatase (TRAP) activity and the number of osteoclast cells (TRAP-positive multinucleated cells) were not changed by nSP treatment in the presence of receptor activator of nuclear factor κB ligand (RANKL) at doses that did not induce cytotoxicity by silica particles. These results indicated that nSP did not cause differentiation of osteoclasts. Collectively, the results suggested that nanosilica exerts no effect on RANKL-induced osteoclast differentiation of RAW264.7 cells, although a detailed mechanistic examination of the nSP70-mediated cytotoxic effect is needed.  相似文献   

5.
Practical uses of nanomaterials are rapidly spreading to a wide variety of fields. However, potential harmful effects of nanomaterials are raising concerns about their safety. Therefore, it is important that a risk assessment system is developed so that the safety of nanomaterials can be evaluated or predicted. Here, we attempted to identify novel biomarkers of nanomaterial-induced health effects by a comprehensive screen of plasma proteins using two-dimensional differential in gel electrophoresis (2D-DIGE) analysis. Initially, we used 2D-DIGE to analyze changes in the level of plasma proteins in mice after intravenous injection via tail veins of 0.8 mg/mouse silica nanoparticles with diameters of 70 nm (nSP70) or saline as controls. By quantitative image analysis, protein spots representing >2.0-fold alteration in expression were found and identified by mass spectrometry. Among these proteins, we focused on hemopexin as a potential biomarker. The levels of hemopexin in the plasma increased as the silica particle size decreased. In addition, the production of hemopexin depended on the characteristics of the nanomaterials. These results suggested that hemopexin could be an additional biomarker for analyzing the biological responses associated with exposure to silica nanoparticles. We believe that this study will contribute to the development of biomarkers to ensure the safety of silica nanoparticles.  相似文献   

6.

Background

Due to the rising use of nanomaterials (NMs), there is concern that NMs induce undesirable biological effects because of their unique physicochemical properties. Recently, we reported that amorphous silica nanoparticles (nSPs), which are one of the most widely used NMs, can penetrate the skin barrier and induce various biological effects, including an immune-modulating effect. Thus, it should be clarified whether nSPs can be a risk factor for the aggravation of skin immune diseases. Thus, in this study, we investigated the relationship between the size of SPs and adjuvant activity using a model for atopic dermatitis.

Results

We investigated the effects of nSPs on the AD induced by intradermaly injected-mite antigen Dermatophagoides pteronyssinus (Dp) in NC/Nga mice. Ear thickness measurements and histopathological analysis revealed that a combined injection of amorphous silica particles (SPs) and Dp induced aggravation of AD in an SP size-dependent manner compared to that of Dp alone. In particular, aggravation was observed remarkably in nSP-injected groups. Furthermore, these effects were correlated with the excessive induction of total IgE and a stronger systemic Th2 response. We demonstrated that these results are associated with the induction of IL-18 and thymic stromal lymphopoietin (TSLP) in the skin lesions.

Conclusions

A particle size reduction in silica particles enhanced IL-18 and TSLP production, which leads to systemic Th2 response and aggravation of AD-like skin lesions as induced by Dp antigen treatment. We believe that appropriate regulation of nanoparticle physicochemical properties, including sizes, is a critical determinant for the design of safer forms of NMs.  相似文献   

7.
Several in vivo studies suggest that nanoparticles (smaller than 100 nm) have the ability to reach the brain tissue. Moreover, some nanoparticles can penetrate into the brains of murine fetuses through the placenta by intravenous administration to pregnant mice. However, it is not clear whether the penetrated nanoparticles affect neurogenesis or brain function. To evaluate its effects on neural stem cells, we assayed a human neural stem cell (hNSCs) line exposed in vitro to three types of silica particles (30 nm, 70 nm, and <44 μm) and two types of titanium oxide particles (80 nm and < 44 μm). Our results show that hNSCs aggregated and exhibited abnormal morphology when exposed to the particles at concentrations ≥ 0.1 mg/mL for 7 days. Moreover, all the particles affected the gene expression of Nestin (stem cell marker) and neurofilament heavy polypeptide (NF-H, neuron marker) at 0.1 mg/mL. In contrast, only 30-nm silica particles at 1.0 mg/mL significantly reduced mitochondrial activity. Notably, 30-nm silica particles exhibited acute membrane permeability at concentrations ≥62.5 μg/mL in 24 h. Although these concentrations are higher than the expected concentrations of nanoparticles in the brain from in vivo experiments in a short period, these thresholds may indicate the potential toxicity of accumulated particles for long-term usage or continuous exposure.  相似文献   

8.
(1) Background: Synthetic amorphous silica (SAS) is widely used as a food additive and contains nano-sized particles. SAS can be produced by fumed and precipitated methods, which may possess different physiochemical properties, toxicokinetics, and oral toxicity. (2) Methods: The toxicokinetics of fumed SAS and precipitated SAS were evaluated following a single-dose oral administration in rats. The tissue distribution and fate of both SAS particles were assessed after repeated oral administration in rats for 28 d, followed by recovery period for 90 d. Their 28-d repeated oral toxicity was also evaluated. (3) Results: Precipitated SAS showed higher oral absorption than fumed SAS, but the oral absorption of both SAS particles was low (<4%), even at 2000 mg/kg. Our tissue-distribution study revealed that both SAS particles, at a high dose (2000 mg/kg), were accumulated in the liver after repeated administration for 28 d, but the increased concentrations returned to normal levels at 29 d, the first day of the recovery period. A higher distribution level of precipitated SAS than fumed SAS and decomposed particle fates of both SAS particles were found in the liver at 28 d. No significant toxicological findings were observed after 28-d oral administration, suggesting their low oral toxicity. (4) Conclusions: Different manufacturing methods of SAS can, therefore, affect its oral toxicokinetics and tissue distribution, but not oral toxicity.  相似文献   

9.
10.
Food additive amorphous silicon dioxide (SiO2) particles are manufactured by two different methods—precipitated and fumed procedures—which can induce different physicochemical properties and biological fates. In this study, precipitated and fumed SiO2 particles were characterized in terms of constituent particle size, hydrodynamic diameter, zeta potential, surface area, and solubility. Their fates in intestinal cells, intestinal barriers, and tissues after oral administration in rats were determined by optimizing Triton X-114-based cloud point extraction (CPE). The results demonstrate that the constituent particle sizes of precipitated and fumed SiO2 particles were similar, but their aggregate states differed from biofluid types, which also affect dissolution properties. Significantly higher cellular uptake, intestinal transport amount, and tissue accumulation of precipitated SiO2 than of fumed SiO2 was found. The intracellular fates of both types of particles in intestinal cells were primarily particle forms, but slowly decomposed into ions during intestinal transport and after distribution in the liver, and completely dissolved in the bloodstream and kidneys. These findings will provide crucial information for understanding and predicting the potential toxicity of food additive SiO2 after oral intake.  相似文献   

11.
Silica nanoparticles (SNPs) are produced on an industrial scale and are an addition to a growing number of commercial products. SNPs also have great potential for a variety of diagnostic and therapeutic applications in medicine. Contrary to the well-studied crystalline micron-sized silica, relatively little information exists on the toxicity of its amorphous and nano-size forms. Because nanoparticles possess novel properties, kinetics and unusual bioactivity, their potential biological effects may differ greatly from those of micron-size bulk materials. In this review, we summarize the physico-chemical properties of the different nano-sized silica materials that can affect their interaction with biological systems, with a specific emphasis on inhalation exposure. We discuss recent in vitro and in vivo investigations into the toxicity of nanosilica, both crystalline and amorphous. Most of the in vitro studies of SNPs report results of cellular uptake, size- and dose-dependent cytotoxicity, increased reactive oxygen species levels and pro-inflammatory stimulation. Evidence from a limited number of in vivo studies demonstrates largely reversible lung inflammation, granuloma formation and focal emphysema, with no progressive lung fibrosis. Clearly, more research with standardized materials is needed to enable comparison of experimental data for the different forms of nanosilicas and to establish which physico-chemical properties are responsible for the observed toxicity of SNPs.  相似文献   

12.

Background  

To date silica nanoparticles (SNPs) play an important role in modern technology and nanomedicine. SNPs are present in various materials (tyres, electrical and thermal insulation material, photovoltaic facilities). They are also used in products that are directly exposed to humans such as cosmetics or toothpaste. For that reason it is of great concern to evaluate the possible hazards of these engineered particles for human health. Attention should primarily be focussed on SNP effects on biological barriers. Accidentally released SNP could, for example, encounter the alveolar-capillary barrier by inhalation. In this study we examined the inflammatory and cytotoxic responses of monodisperse amorphous silica nanoparticles (aSNPs) of 30 nm in size on an in vitro coculture model mimicking the alveolar-capillary barrier and compared these to conventional monocultures.  相似文献   

13.
采用NP-5/环己烷/去离子水体系制备反相微乳液,绘制了该体系的三元相图,并以正硅酸乙酯(TEOS)为原料,在碱性条件下受控水解反应制备了纳米SiO2粒子,探讨了[n(水)∶n(表面活性剂)](用R表示)和[n(水)∶n(TEOS)](用H表示)对SiO2纳米粒子粒径的影响。通过扫描电镜(SEM)和激光粒度仪对样品形貌和粒子大小和粒径分布进行了表征。结果显示:扫描电镜下观察到的SiO2粒子为无定型球形颗粒,粒径在200~500 nm的范围,激光粒度仪分析得到的平均粒径随着R和H的增大而增大。  相似文献   

14.
Epoxy resin nanocomposites were prepared by curing bisphenol‐F with an aliphatic amine in the presence of SiO2 and ZrO2 nanoparticles as inorganic fillers. Both types of particles were prepared with diameters of around 10 nm and 70 nm to study size effects in the nanocomposites. The nanoparticles showed a different constitution: while silica was amorphous and spherical in nature, zirconia was crystalline and non‐spherical. Both nanoparticles were surface‐functionalized with novel diethylene‐glycol‐based capping agents to increase the compatibility with the epoxy matrix. The organic functionalities were attached to the nanoparticle surface via phosphonic acid (zirconia) and trialkoxysilane (silica) anchor groups. The homogeneity of the distribution of surface‐modified inorganic nano‐sized fillers in the matrix up to 5.8 vol% in case of silica and 2.34 vol% in case of zirconia was determined by small‐angle X‐ray scattering and transmission electron microscopy. Mechanical properties such as hardness and storage modulus were increased with increasing filler content while thermal stability of the obtained materials was nearly unaffected after incorporation of nanoparticles. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
Quercetin is an abundant flavonoid in food plants with numerous biological activities and widely used as a potent antioxidant. Being sparingly soluble in water and subject to degradation in aqueous intestinal fluids, the absorption of quercetin is limited upon oral administration. In the present study, chitosan nanoparticles and quercetin‐loaded nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. The encapsulation of quercetin in the chitosan nanoparticles were confirmed by differential scanning calorimetry, X‐ray powder diffractometry, Fourier transformed infrared spectroscopy, ultraviolet‐visible spectrum, and fluorescence spectrum. The morphology of the nanoparticles was characterized by atomic force microscopy. The antioxidant activity of the quercetin‐nanoparticles was also evaluated in vitro by two different methods (free radical scavenging activity test and reducing power test), which indicates that inclusion of quercetin in chitosan nanopaticles may be useful in improving the bioavailabilty of quercetin. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

16.
ABSTRACT: Mechanisms for cellular uptake of nanoparticles have important implications for nanoparticulate drug delivery and toxicity. We have explored the mechanism of uptake of amorphous silica nanoparticles of 14 nm diameter, which agglomerate in culture medium to hydrodynamic diameters around 500 nm. In HT29, HaCat and A549 cells, cytotoxicity was observed at nanoparticle concentrations 1 mug/ml, but DNA damage was evident at 0.1 mug/ml and above. Transmission electron microscopy (TEM) combined with energy-dispersive X-ray spectroscopy confirmed entry of the silica particles into A549 cells exposed to 10 mug/ml of nanoparticles. The particles were observed in the cytoplasm but not within membrane bound vesicles or in the nucleus. TEM of cells exposed to nanoparticles at 4 C for 30 minutes showed particles enter cells when activity is low, suggesting a passive mode of entry. Plasma lipid membrane models identified physical interactions between the membrane and the silica NPs. Quartz crystal microbalance experiments on tethered bilayer lipid membrane systems show that the nanoparticles strongly bind to lipid membranes, forming an adherent monolayer on the membrane. Leakage assays on large unilamellar vesicles (400 nm diameter) indicate that binding of the silica NPs transiently disrupts the vesicles which rapidly self-seal. We suggest that an adhesive interaction between silica nanoparticles and lipid membranes could cause passive cellular uptake of the particles.  相似文献   

17.
Copolymers of aniline and o-anthranilic acid/amorphous fumed silica nanocomposite are synthesized by 5:1 molar ratios of the respective monomers with different percentages of silica nanoparticles via in situ chemical co-polymerization. The electrical conductivity and spectral characteristics upon incorporation of o-anthranilic acid units into the polyaniline backbone in presence of silica nanoparticles are investigated. The results are justified by measuring the UV-Vis absorption spectra, FT-IR for PANAA copolymer, and in situ PANAA/silica nanocomposite. Also, the thermal gravimetric analysis for the copolymer powder formed in the bulk in absence and in presence of silica nanoparticles are carried out.  相似文献   

18.
氧化锌(ZnO)具有宽带隙、高光催化效率和稳定的化学性质,已成为处理水体中有机污染物的常用材料.采用超声雾化辅助微波法成功合成了ZnO纳米颗粒,XRD图谱和TEM照片表明超声雾化抑制了ZnO结晶,其结构为无序状,得到的ZnO纳米颗粒为非晶态.非晶态ZnO纳米颗粒紫外最强吸收峰为300nm,紫外吸收边发生红移,禁带宽度降...  相似文献   

19.
The term “nanosilica” refers to materials containing ultrafine particles. They have gained a rapid increase in popularity in a variety of applications and in numerous aspects of human life. Due to their unique physicochemical properties, SiO2 nanoparticles have attracted significant attention in the field of biomedicine. This study aimed to elucidate the mechanism underlying the cellular response to stress which is induced by the exposure of cells to both biogenic and pyrogenic silica nanoparticles and which may lead to their death. Both TEM and fluorescence microscopy investigations confirmed molecular changes in cells after treatment with silica nanoparticles. The cytotoxic activity of the compounds and intracellular RNS were determined in relation to HMEC-1 cells using the fluorimetric method. Apoptosis was quantified by microscopic assessment and by flow cytometry. Furthermore, the impact of nanosilica on cell migration and cell cycle arrest were determined. The obtained results compared the biological effects of mesoporous silica nanoparticles extracted from Urtica dioica L. and pyrogenic material and indicated that both types of NPs have an impact on RNS production causing apoptosis, necrosis, and autophagy. Although mesoporous silica nanoparticles did not cause cell cycle arrest, at the concentration of 50 μg/mL and higher they could disturb redox balance and stimulate cell migration.  相似文献   

20.
以多晶硅副产物四氯化硅为原料,氨水为中和剂,十二烷基苯磺酸钠为改性剂,在水-醇-氨体系中利用液相鼓泡法制备纳米白炭黑,并采用IR、XRD、SEM、TEM对纳米白炭黑晶体结构、形貌、分散性及粒径进行表征。研究了醇水比、氨水用量、分散剂种类及用量、双氧水加入量等因素对纳米白炭黑分散性及粒径的影响。纳米白炭黑最佳制备工艺条件:体系总体积为70 mL,V(水)∶V(醇)∶V(氨)=38∶15∶12,六偏磷酸钠加入量为1.5%(质量分数),双氧水用量为5 mL。IR、XRD表征结果表明产品为无定形二氧化硅;SEM、TEM表征结果表明纳米白炭黑粒径约100 nm且分散较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号