首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxyapatite (HA) and a lab-made bioactive glass (BGMS10) are combined (50/50 wt%) in this work, where the effect produced by a ball milling (BM) treatment (0–120 min) prior SPS consolidation on the characteristics of the resulting products is investigated. An extraordinary improvement of the apatite-forming ability during in-vitro test on SPS samples (800 °C/70 MPa/2 min) is obtained using the 30 min BMed mixture. Superior Young’s Modulus (122 GPa) and Vickers Hardness (675) were also found compared to unmilled samples (95 GPa and 510, respectively). Microstructural changes induced by BM, with 90 nm HA crystallites size in the bulk composite, and the intimate HA/BGMS10 interfaces established, are the factors mainly responsible for such result. When milling was prolonged to 120 min, samples with relatively lower density, mechanical properties, and in-vitro bioactivity, were produced under the same SPS conditions. The formation of crystalline SiO2 during SPS might be responsible for such behaviour.  相似文献   

2.
This paper describes the fabrication and characterization of novel preceramic paper-derived functionally graded materials (FGMs) based on Ti3(Si,Al)C2 MAX phase. The FGMs with different architecture were fabricated via spark plasma sintering of stacked preceramic papers at 1250 °C for 5 min. Microstructure, phase composition and elemental distribution were analyzed by scanning electron microscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy, respectively. Oxidation tests were performed in air at 1300 °C for 5 h. FGMs containing Al- and Si-enriched MAX-phase layers were formed. The fabricated materials exhibit high flexural strength (over 600 MPa), which are dependent on microstructure and composition of individual layers as well as the architecture of composites. It was found that texturing of MAX phase grains during SPS results in anisotropic hardness of the composite. The difference in the composition of the individual layers also provides a hardness gradient in the composite. It was shown that the formation of the outer layer from the Al-enriched Ti3Al(Si)C2 MAX phase increases the corrosion resistance of Ti3SiC2-based composites. The high corrosion resistance of FGMs is due to the growth of a continuous and dense Al2O3 oxide layer.  相似文献   

3.
Hafnia based ceramics are potential promising candidates to be used as thermal barrier coatings (TBC) for applications in the field of propulsion. In this study, Spark Plasma Sintering (SPS) of fully stabilised hafnia with yttrium oxide (yttria) was investigated to provide a better understanding of the effect of manufacturing parameters, on the crystallography, chemistry and microstructure of the material. Several hafnia powders, containing different amounts of yttria (33 mol. %, 40 mol. % or 50 mol. %), were sintered by SPS at different temperature levels ranging from 1600 °C to 1850 °C. On these materials, X-ray diffraction patterns associated with scanning electron micrographs have highlighted the influence of both the sintering temperature and the amount of yttria on the final composition, the lattice parameter and the microstructure of hafnia-based materials. In the end, it is established that, for all quantities of yttrium employed, the main phase is Y2Hf2O7 with very high densification levels.  相似文献   

4.
Three dimensional scaffolds with controlled pore architecture were prepared from 45S5 Bioglass® powders by robocasting (direct-writing) using carboxymethyl cellulose (CMC) as the single processing additive. A comprehensive sintering study of the resulting structures was performed within the temperature range 500–1050 °C. Robocast scaffolds with interconnected porosities ranging from 60 to 80% were obtained for a fixed scaffold design. All scaffolds exhibited compressive strengths comparable to that of cancellous bone (2–13 MPa), including those sintered at temperatures below the crystallization temperature of 45S5 bioactive glass. These strength values are substantially higher than any previously reported data for 45S5 Bioglass® scaffolds and imply that robocasting is the first technique which can be considered suitable for producing vitreous 45S5 scaffolds with a sufficient mechanical integrity for any practical application. Moreover, this process will enable the development of 45S5 Bioglass® scaffolds with customized external geometry, and optimized pore architecture.  相似文献   

5.
SPS烧结层状TiB2/BN陶瓷的界面研究   总被引:4,自引:0,他引:4  
唐田  张东明  付正义 《陶瓷学报》2001,22(3):121-124
本文采用放电等离子烧结(SPS)技术烧结层状TiB2/BN陶瓷,研究其界面结合的性质和状况。并讨论了当夹层厚度不同的时候,界面结合的不同机制。  相似文献   

6.
Hydroxyapatite-based composites (HA-C) with bioglass as second phase are usually produced by hot-pressing or pressureless sintering. However, such methods require thermal levels which exceed the crystallization temperature of the glass, with possible negative effects on the bioactivity of the final system. Spark plasma sintering (SPS) is a powerful consolidation technique in terms of both processing time and temperature. In this work SPS has been employed, for the first time, to obtain HA-C with an innovative bioglass as second phase. Such glass was designed to be used whenever a thermal treatment is required, thanks to its low tendency to crystallize. A systematic study is conducted to identify the optimal sintering conditions for preparing highly dense composites and, at the same time, to minimize the crystallization of the glassy phase. The obtained samples are highly bioactive and display higher compactness and hardness with respect to the counterparts produced by conventional sintering methods.  相似文献   

7.
《Ceramics International》2016,42(16):17990-17996
Spark Plasma Sintering (SPS) has attracted a lot of interest in recent years owing to its ability to enable the densification of a broad range of materials in a very short processing time. It is well documented in the literature that the very high heating rates that can be applied with this technology can lead to the apparition of large thermal gradients in the tool and thus affect the homogeneity of the compact.In the present study, the influence of the compact thermal and electrical properties on the thermal gradients was studied. Al2O3, AlN and TiC powders were used to produce series of Al2O3-TiC and AlN-TiC composites (0, 25, 50, 75, 100 vol%TiC) showing different electrical and thermal conductivities. Two pyrometers were used in order to observe and measure the thermal gradients and the percolation of the current during sintering at a high heating rate and without insulation.Electrical conductivity measurements were carried out on samples presenting different relative densities. This samples were obtained through interrupted sintering cycles at temperatures below and above the identified percolation threshold temperature.It was shown that high thermal gradients can appear during SPS depending on the processing parameters (dimensions of the die and heating rate) but also on the composition of the compact (proportion of conductive phase) and on its density.  相似文献   

8.
In this study, a series of electrospun chitosan/polyethylene oxide (PEO) nanofibrous scaffolds containing different amount of cerium-doped bioactive glasses (Ce-BGs) have been fabricated and proposed for tissue engineering applications. On a biological level, higher 8Ce-BG content significantly improved cytocompatibility of the scaffolds. Moreover, results of fibroblast cell culture study showed that greater 8Ce-BG content could enhance cell attachment and cell expansion on fiber mesh. Characterization of the scaffolds revealed that increasing 8Ce-BG content caused bioactive glass nanoparticles to agglomerate at a higher rate. The SEM mapping revealed thorough dispersion of submicrometric clusters in all areas of the polymeric matrix. Contact angle measurements showed that increasing 8Ce-BG/CH ratio from 0 to 10 (wt.%) improved wettability of the scaffold significantly. However, by increasing the ratio beyond 10 (wt.%), the wettability values decreased gradually. In conclusion, it was found that increasing 8Ce-BG/CH weight ratio up to 40 (wt.%) in the scaffold system was practical and useful for soft tissue engineering applications.  相似文献   

9.
The unique combination of SiC properties opens the ways for a wide range of SiC-based industrial applications. Dense silicon carbide bodies (3.18±0.01 g/cm3) were obtained by an SPS treatment at 2050 °C for 10 min using a heating rate of 400 °C/min, under an applied pressure of 69 MPa. The microstructure consists of fine, equiaxed grains with an average grain size of 1.29±0.65 μm. TEM analysis showed the presence of nano-size particles at the grain boundaries and at the triple-junctions, formed mainly from the impurities present in the starting silicon carbide powder. The HRTEM examination revealed high angle and clean grain boundaries. The measured static mechanical properties (HV=32 GPa, E=440 GPa, σb=490 MPa and KC 6.8 MPa m0.5) and the Hugoniot Elastic Limit (HEL=18 GPa) are higher than those of hot-pressed silicon carbide samples.  相似文献   

10.
G. Li  G. Liang  S. Zhao  K. Ma  W. Feng  D. Zhou 《应用陶瓷进展》2015,114(3):164-174
Eu2O3 was added to bioactive glass ceramic in the system CaO–SiO2–P2O5–MgO–CaF2 to prepare porous luminescent scaffold with high mechanical property. The crystal structure, compressive strength, in vitro bioactivity, cell affinity and luminescent property under ultraviolet of samples was evaluated. According to results, Eu2O3 improved the crystallisation behaviour but inhibited fluorapatite formation in the glass ceramics. Although scaffolds had connective porous structure, the compressive strength could be improved to as high as 3·6 MPa with the addition of Eu2O3. The in vitro bioactivity test showed a decrease in Ca release ability and a retardation of apatite forming on the samples with increasing substitution of Eu2O3 for CaO. The 3-(4,5-dimethylthiazol-2-yl)-2,5-dipheyltetrazolium bromide assay and SEM observation results displayed that ROS17/2·8 cells could attach and differentiate on all the scaffolds. Moreover, the Eu2O3 doped scaffolds fluoresced well a red colour under ultraviolet, and a decrease in the emission intensities could be observed after the cell coculturing process.  相似文献   

11.
For the first time, a Zn1.1Ga1.8Ge0.1O4 transparent spinel ceramic has been fully densified by spark plasma sintering. XRD measurements show that this ceramic is composed of a pure cubic spinel phase. SEM analysis revealed a homogeneous and dense microstructure with the average grain size being 200 ± 100 nm. The transmittance of these fine-grained ceramics reached 70 % in the visible range and is very close to 80 % at 2 µm, thus close to the Tmax value deduced from the measurement of the refractive index. The ceramics exhibit excellent mechanical properties with a Young modulus of 222 GPa, a Vickers hardness of 14.25 GPa and a thermal conductivity of 7.3 W.m−1. K−1. By doping with Cr3+ ions, transparent Zn1.1Ga1.8Ge0.1O4 ceramics present both a red luminescence and a long-lasting afterglow during several minutes. Moreover, a near infrared broadband emission at 1.3 µm is also achieved with Ni2+ ions.  相似文献   

12.
《Ceramics International》2022,48(6):7491-7499
3D printing technology can fabricate customized scaffolds based on patient-derived medical images, so it has attracted much attention in the field of developing bone repair scaffolds. Polycaprolactone (PCL) is a suitable polymer for preparing bone repair scaffolds because of its good biocompatibility, thermal stability, excellent mechanical properties and degradable properties. However, PCL is a bioinert material and cannot induce new bone formation at the defect site. In this study, the bioactive material 58s bioactive glass was mixed into PCL to form PCL/bioactive glass composite material. The results of contact angle showed that the hydrophilicity of the scaffold was significantly enhanced with the increase of bioactive glass content. In vitro experiment results showed that, with the increase of bioactive glass content, cell adhesion and proliferation were enhanced, the expression levels of Runx2 and Collagen I(COL-I) were upregulated. The experimental results of in vivo radial defect repair in rats also showed that the effect of bone repair was improved with the increase of bioactive glass content. In conclusion, PCL customized bone repair scaffold containing 20% bioactive glass has widely potential used in the field of clinical bone repair.  相似文献   

13.
Polycaprolactone scaffolds, polycaprolactone/gelatin, and polycaprolactone/gelatin/bioactive glass scaffolds were prepared with ratios of 50/50, 25/75, and 75/25 for polymers and 5?wt% for the bioactive glass via electrospinning and then were characterized using. The results indicated that by adding gelatin and bioactive glass to polycaprolactone scaffold, the diameter of fiber decreased from 557 to 167?nm. The results showed growth of apatite layer on the scaffolds after immersion in simulated body fluid for 28?days. The results of mechanical test revealed that by adding bioactive glass to scaffolds, the ultimate tensile strength and Young's modulus increase about two folds.  相似文献   

14.
Desired bone repair biomaterial must have good biocompatibility and suitable mechanical properties that are equivalent to those of human bones. In this study, multi-walled carbon nanotubes (MWCNTS) was designed to incorporate into bioactive glass/poly(etheretherketone) to fabricate a composite of multi-walled carbon nanotubes/bioactive glass/poly(etheretherketone) (MWCNTS/BG/PEEK) through a compounding and injection-molding process. The microstructures, mechanical properties, thermal stability and bioactivity of the ternary biocomposite, as well as preliminary cell responses of MC3T3-E1 osteoblast cells to this biomaterial, were investigated. The mechanical performance of ternary MWCNTS/BG/PEEK composite was vastly superior to binary BG/PEEK composite. More importantly, cell culture tests showed that cell adhesion, viability and differentiation of MC3T3-E1 cells were significantly promoted on the MWCNTS/BG/PEEK composite. Moreover, it was found that MWCNTS in composite further promoted cell metabolic vitality and osteogenic differentiation of osteoblast cells. Hence, this MWCNTS/BG/PEEK biomaterial may be used as a promising bone graft scaffold in dental and orthopedic applications.  相似文献   

15.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   

16.
《Ceramics International》2022,48(6):8276-8285
Silver-containing mesoporous bioglasses powders with SiO2–CaO–P2O5–Ag2O composition have been successfully synthesized by sol-gel and evaporation-induced self-assembly (EISA) methods in presence of various amounts of surfactant (Pluronic-F127). The morphology and crystal structure of the powders were characterized by scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (XRD). Also, the textural properties of samples have been evaluated by adsorption-desorption, Langmuir and BET methods. Accordingly, powders had a smooth surface morphology with cubic mesoporous structure and a desired surface area and pore volume. The in vitro bioactivity was assessed by SEM, XRD and Fourier transform infrared spectroscopy (FTIR) analyses. All samples enhance the formation of HA after soaking the material in simulated body fluid (SBF) solution. The antibacterial property of samples was evaluated to investigate the effect of silver content in chemical composition. The results showed an adequate antibacterial activity of the samples against Escherichia coli, Salmonella and Listeria monocytogenes.  相似文献   

17.
《Ceramics International》2023,49(6):8649-8682
In response to stringent environmental rules and rising public awareness, internal combustion (IC) engines have undergone fast improvement to reduce friction and wear in recent decades. Liner is a sacrificial engine component that protects and provides a smooth reciprocation surface to the engine block. High hardness aluminum alloys are used to produce cylinder liners. When reinforced with suitable ceramic particles, the strength, hardness, stiffness, thermal stability, and wear resistance of these alloys are improved. Here, the underlying challenges in liners are discussed, along with various solutions. The detailed fabrication process of centrifugally cast functionally graded composite materials (FGMs) for prospective use as liners is emphasized. Various parameters and their effect on mechanical and tribological properties are discussed in depth, and a comparison is made with existing Aluminum liners. A general framework for optimal material selection, parameter selection, and processing procedure is proposed to develop the FGM liner. In addition, challenges, research opportunities, and possibilities for the development of this field are presented.  相似文献   

18.
《Ceramics International》2016,42(7):8351-8359
Dense and crack free six-layered functional graded materials were successfully produced by Spark Plasma Sintering by combining 3 mol% Y2O3-partially stabilized ZrO2 (3Y-PSZ) and 316L stainless steel. All the sintered products consisted of a steel free layer on one side and a cermet composite containing 50 vol% of both constituents on the opposite side. Conversely, the stainless steel concentration in the interlayers was progressively changed following diverse spatial profiles.It was found that the temperature interval from 1080 to 1180 °C required for the full consolidation from the 50 vol% composite layer to the 3Y-PSZ one, respectively, can be reached when adopting a specific die configuration where the cross section was varied from 30 to 28 mm, respectively. Correspondingly, the densification level of each layer, as well as the related hardness and fracture toughness properties, were highly enhanced with respect to the standard cylindrical die. In addition, a significant improvement of the material toughness was obtained when the material concentration exponent was decreased from 2 to 1, whereas this effect tends to vanish when such parameter was further reduced to 0.5.  相似文献   

19.
The dental composites based on poly(methyl methacrylate)/hydroxyapatite (PMMA/HA) were prepared through heat-processing polymer powder-liquid method, in the presence of poly(lactic acid) powder (PLA; 5–20 phr). The PLA powder enhanced the flexural modulus and strength of PMMA/HA composites. The Alamar Blue assay results indicated the PMMA/HA/PLA composites were able to sustain human gingival fibroblasts (HGF) cells growth. The images of live/dead cells confocal showed the populations of living cells on the composites surface were confluent and the survival of HGF cells on the PMMA composites surface are assured. These features suggested that the PLA powder reinforced PMMA/HA composites demonstrated excellent biocompatibility.  相似文献   

20.
Poly(L ‐lactic acid) (PLLA) is one of the most studied synthetic biodegradable polymeric materials as a bone graft substitute. Taking into account the osteoconductive property of hydroxyapatite (HAp), we prepared fibrous matrices of PLLA without and with HAp particles in amounts of 0.25 or 0.50% (w/v, based on the volume of the base 15% w/v PLLA solution in 70:30 v/v dichloromethane/tetrahydrofuran). These fibrous matrices were assessed for their potential as substrates for bone cell culture. The presence of HAp in the composite fibre mats was confirmed using energy dispersive X‐ray spectroscopy mapping. The average diameters of both neat PLLA and PLLA/HAp fibres, as determined using scanning electron microscopy, ranged between 2.3 and 3.5 µm, with the average spacing between adjacent fibres ranging between 5.7 and 8.5 µm. The porosity of these fibrous membranes was high (ca 97–98%). A direct cytotoxicity evaluation with L929 mouse fibroblasts indicated that the neat PLLA fibre mats released no substance at a level that was toxic to the cells. The presence of HAp particles at 0.50% w/v in the PLLA fibrous scaffolds not only promoted the attachment and the proliferation of MC3T3‐E1 mouse pre‐osteoblastic cells, but also increased the expression of osteocalcin mRNA and the extent of mineralization after the cells had been cultured on the scaffolds for 14 and 21 days, respectively. The results obtained suggested that the PLLA/HAp fibre mats could be materials of choice for bone tissue engineering. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号