首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Piezoelectric ceramic – Portland cement composites have been developed for sensor application in concrete structures to overcome the acoustic matching problem that may occur for piezoelectric ceramic or polymers with concrete. Pozzolanic materials such as fly ash are commonly used in concrete to enhance durability. The objectives of this research were to investigate the effects of fly ash addition on the physical properties, dielectric properties and piezoelectric properties of 0–3 barium zirconate titanate ceramic– Portland cement composites. The results showed that the dielectric constant of these composites decreased when the fly ash content in the composite increases. However, the piezoelectric coefficient (d33) value of BZT–PC composite with fly ash 10% by volume was found to be similar to that of BZT–PC composites.  相似文献   

2.
Lead free piezoelectric ceramics (1−x)BNLT−xBZT with x=0.00, 0.06, 0.09 and 0.12 were prepared using a two-step mixed oxide method. Dielectric, ferroelectric and piezoelectric properties of the ceramics were improved by the addition of the BZT. XRD results show tetragonal symmetry structure of the BNLT–BZT ceramics. It was found that the tetragonality increases with increasing BZT content. The optimum composition is x=0.09, where the maximum values of the piezoelectric constant d33 (~126 pC/N) and dielectric constant (~2400) were obtained at room temperature. This BNLT–BZT system can be a promising candidate for lead-free piezoelectric ceramics.  相似文献   

3.
Bi(Zn1/2Ti1/2)O3−BiScO3−PbTiO3 (BZT−BS−PT) high Curie temperature piezoelectric ceramics were synthesized by the conventional solid-state reaction method. Systematical investigations on the sintering, piezoelectric, and dielectric properties of the piezoceramics have been conducted. It was found that the sintering temperature could be remarkably depressed by varying the compositions in BZT−BS−PT systems. For composition of 11BZT−34BS−55PT ceramic, the sintering temperature is even lowered down to 750°C without any extra additions of sintering aids. Meanwhile, the ceramic sintered at this ultralow temperature presents dense microstructure with relative density up to 97%, as well as optimal properties of piezoelectric coefficient d33 of 336 pC/N and Curie temperature of 415°C. The mechanism of low sintering temperature may be ascribed to the low melting point bismuth-based components in BZT−BS−PT solid solutions. Furthermore, 11BZT−34BS−55PT multilayer ceramics have been co-fired at 750°C with Ag internal electrodes. The dense structures, low cost, and optimal comprehensive properties of the co-fired multilayers illustrate obvious advantages of the ultralow sintering temperature in LTCC devices, implying promising applications of this Bi(Zn1/2Ti1/2)O3−BiScO3−PbTiO3 high Curie temperature ternary system.  相似文献   

4.
Lead-free piezoelectric ceramics of (1 − x)(Bi0.5Na0.5)0.94Ba0.06TiO3xBa(Zr0.04Ti0.96)O3 (abbreviated as BNBT–BZT100x, wherein x from 0 to 10 mol%) were fabricated. We have studied effects of amount of BZT content on the electrical properties and microstructures. X-ray diffraction analysis indicates that a solid solution is formed when BZT diffuses into the BNBT lattice, and further the crystal structure of sintered hybrid changes from rhombohedral to tetragonal symmetry along with increasing BZT content. Piezoelectric property measurements reveal that the BNBT–BZT4 ceramics has the highest piezoelectric performance, for example, the piezoelectric constant d33 reaches to 167 pC/N and planar electromechanical coupling factor kp is up to 0.27. In addition, the effect of Bi2O3 on the electrical properties and microstructure of the BNBT–BZT4 ceramics have also been studied, and found that the doping of Bi enhances the piezoelectric properties of ceramics.  相似文献   

5.
Non-lead barium zirconate titanate (BZT)-Portland cement (PC) composites have been seen as promising new non-lead composites. This paper reports research work on the dielectric and piezoelectric properties of 1–3 non-lead barium zirconate titanate (BZT)-Portland cement (PC) composites. The 1–3 non-lead composites with different BZT contents at 40–70% by volume were fabricated by the dice-and-fill method. The results show that the dielectric loss of the 1–3 non-lead composite was lowest at 0.08 at 70% BZT composites. The models are applied for the calculation with the dielectric constant, piezoelectric coefficient and piezoelectric voltage constant and the results were found to fit closest to that of the parallel model. At 70% BZT content or higher, piezoelectric coefficient was found to have values higher than 130 pC/N. In addition, the new 1–3 non-lead composites can be tuned to an ideal compatible value that match the requirement of concrete structure.  相似文献   

6.
Fly ash (FA) is widely used as a supplementary cementitious material in the production of Portland cement concrete. The effect of addition of carbon nanotubes (CNTs) and FA on the properties of barium calcium stannate titanate (BCTS) ceramic–Portland FA cement composites was investigated. These composites have potential for use as sensors and transducers in the monitoring of structural health in concrete structures containing FA. CNTs were found to have filled the pores of the composites. All composites showed good compatibility with the concrete mix. The dielectric constant and electrical conductivity of composites were in the range 200–257 and 1.04 × 10–6 to 1.66 × 10−6 S/m, respectively. The presence of FA in composites increased the piezoelectric voltage coefficient (g33). Adding CNTs increased the piezoelectric charge coefficient (d33), thickness electromechanical coupling coefficient (Kt), and also g33 but decreased mechanical quality factor (Qm), which is related to good for the receiving sensor and transducer application. CNTs can improve the properties of these composites and composite with FA content at 10 vol.%, and CNTs at 1 vol.% exhibited the highest compressive strength and piezoelectric values (d33 = 44 pC/N, g33 = 20.21×10–3 V m/N, and Kt = 18.9%), along with higher g33 values, than pure BCTS ceramic.  相似文献   

7.
《Ceramics International》2023,49(18):29897-29904
A group of 1–3 type piezoelectric Pb (Mg1/3Nb2/3)O3-PbTiO3/polyvinylidene fluoride (PMN-PT/PVDF) composite sheets are prepared using a complex two-step hot-pressing method. Then the molecular structure model of piezoelectric materials and an inverse piezoelectric simulation of the composites are performed to express the horizontal compression, indicating the clamping activity of ferroelectric PVDF on PMN-PT. As such, this composite sheet possesses a high dielectric permittivity (εr) of 560 at 100 Hz for its compacted connecting of two phases. After polarization, a very large piezoelectric coefficient (d33) of 1125 pC/N and a considerable electromechanical coupling factor (kt) of 0.43 is obtained in PMN-PT/PVDF sheet with a proper aspect ratio of 1.4 and a thickness of 2.1 mm, further indicating that promoting effect of PVDF matrix on the strain in Z-direction of PMN-PT. The result shows that ferroelectric PVDF serving as polymer matrix favors the electromechanical coupling effect, and may provide a prospect of the potential application of PMN-PT/PVDF composite in sensor or transistor for matrix ultrasonic probes.  相似文献   

8.
《Ceramics International》2021,47(20):28260-28267
Piezoelectric materials are an indispensable part of modern life. Yet the existing environmental issues with conventional lead-based piezoelectrics has motivated scientist to develop novel substitutes including lead-free piezoelectric polymer composites. Following this path, the present research has focused on the fabrication of ternary composites of Polyvinylidene fluoride (PVDF)/Potassium Sodium Niobate (KNN)/nano-Silicon carbide (SiC) via hot compression molding and studying the effect of additives on the PVDF structure and the electrical properties of the composite. The obtained scanning electron micrographs and density measurements showed that the fabrication method provided dense samples. The activated polarization phenomena in the prepared samples enhanced dielectric permittivity and dielectric loss at a constant frequency with increasing KNN and SiC contents. Besides the expected dipole polarization, the presence of interfaces in the composites gave rise to the Maxwell–Wagner–Sillars effect and its corresponding polarization phenomenon. The semiconductive nature of SiC also promoted space charge polarization. However, these properties were frequency-dependent because the first two polarization mechanisms are deactivated at high frequencies. XRD patterns showed that SiC addition can alter the primary crystalline structure of PVDF and promote β-phase formation in the poled samples. Piezoelectric measurements confirmed the significant role of SiC addition to PVDF-KNN composites. The most significant increase in the piezoelectric properties was observed in PVDF-60KNN-1SiC, with a 183% increase in d33 value. The PVDF-80KNN-1SiC had the highest d33 value of 30.5 pC/N. It also had the best piezoelectric voltage coefficient and hence the highest figure of merit. Higher SiC contents restrict the efficiency of poling by forming a conductive path across the sample which would deteriorate the piezoelectric performance of the material. The present findings show that PVDF-KNN-SiC composites can be considered as a potential flexible piezoelectric material for future applications.  相似文献   

9.
Lead-free high-temperature ceramics with compositions of 0.71BiFe1−x(Zn1/2Ti1/2)xO3–0.29BaTiO3 (BFZTx–BT, x=0–0.05 mol fraction) were fabricated by a conventional solid state reaction method. The effect of Bi(Zn1/2Ti1/2)O3 (BZT) addition on the microstructure, electrical properties, relaxor behavior, and temperature stability has been studied. XRD patterns revealed that all compositions formed a single perovskite phase of pseudo-cubic crystal structure. The grain size was slightly affected by BZT addition. The diffuse phase transition and strong frequency dispersion of dielectric permittivity are observed for BZT modified ceramics. The addition of BZT into BFZTx–BT was also found to affect the piezoelectric properties and temperature stability of the ceramics with maximum values observed for x=0.5% and 1% BFZTx–BT compositions, respectively. The optimum piezoelectric properties with d33=163 pC/N, together with high-temperature stability with a depolarization temperature Td∼380 °C, reveal the BFZTx–BT ceramics to be promising high-temperature Pb-free piezoelectric materials.  相似文献   

10.
Damping materials are used to control mechanical vibrations, and piezoelectric damping composite is a very promising material due to its unique mechanism. In this study, a potential piezoelectric damping composite was developed by simply melt mixing poly(vinylidene fluoride) (PVDF) with small amounts of organic modified montmorillonite (OMMT) and multi‐walled carbon nanotubes (MWCNTs). The piezoelectric, mechanical and electrical properties were investigated using a dynamic mechanical analyser, direct current electrical resistivity measurements, X‐ray diffraction, Fourier transform infrared spectroscopy and the direct quasi‐static d33 piezoelectric coefficient method. It was found that the damping property of PVDF can be greatly improved by adding both MWCNTs and OMMT, and the composite containing 1.9 wt% of MWCNTs and 3 wt% of OMMT showed the best damping property. A model and an approximate calculation were applied to explain the improved damping property. Moreover, similar mechanical properties of PVDF composites were observed in the tensile testing and dynamic mechanical analyser measurements. Copyright © 2012 Society of Chemical Industry  相似文献   

11.
Introducing electrical conductive function to discharge local piezoelectric effect is found effective for improving airborne sound absorption performance. In this work, instead of conductive fillers, a composite with two piezoelectric materials with opposite piezoelectric responses was explored aiming at enhanced sound absorption effect. Open-cell poly(vinylidene fluoride)/(K0.5Na0.5)NbO3 (PVDF/KNN)-nanofiber composite foams were proposed and investigated for airborne sound absorption purpose. Structural and thermal analyses showed that the KNN nanofibers were well dispersed in the PVDF matrix and enhanced the degree of crystallinity of polar phase of PVDF. Significantly enhanced airborne sound absorption over a broad frequency range was observed in the PVDF/KNN-nanofiber composite foams, with increasing KNN nanofibers. One possible mechanism for the improved sound absorption with the piezoelectric KNN nanofibers with positive piezoelectric coefficient added in the PVDF matrix with negative piezoelectric coefficient is that electrical discharge could be facilitated for energy dissipation with the opposite charges generated through the piezoelectric effects in the two phases with opposite polarity. The experimental results show that the open-cell PVDF/KNN-nanofiber composite foams are promising for broadband airborne sound absorption application, and our analysis shed a light on the strategy in designing piezoelectric composite foam with high sound absorption performance.  相似文献   

12.
Piezoelectric polymer composite films have attracted extensive attention due to their comprehensive characteristics such as low cost, good flexibility, mechanical property and excellent processability. Among the known polymers, poly (vinylidene fluoride) (PVDF) is an ideal piezoelectric polymer because the β-crystalline form of PVDF has the highest polarization per unit cell. However, initial PVDF mostly suffers from the lack of a β phase, restricting its potential applications. Few-layer MoS2 is predicted to be strongly piezoelectric owing to the opposite orientations of adjacent atomic layers. In this work, we report an efficient approach to enhance the piezoelectric property of PVDF-based nanocomposites by combining few-layer MoS2 with PVDF. The product yield for few-layer MoS2 reached a value as high as 83.3% via a unique liquid-exfoliation technique. For a few-layer MoS2/PVDF composite film with 1?wt.% few-layer MoS2, a high piezoelectric performance enhancement of 360% was achieved compared with the initial PVDF film. In addition, due to the intrinsic lubrication of MoS2, the highest elongation of the piezoelectric composite film was found to be four times higher than that of the pure PVDF film.  相似文献   

13.
Ceramic/polymer composites are attracting increasing interest in materials research and practical applications due to the combination of excellent electric properties of piezoelectric ceramics and good flexibility of polymer matrices. In this case, the crystallization of the polymer has a significant effect on the electric properties of ceramic/polymer composites. Based on different heat treatment methods, the crystallization of poly(vinylidene fluoride) (PVDF) in composites of lead zirconate titanate (PZT) and PVDF can be controlled effectively. PZT/PVDF composites with various PVDF crystallizations exhibit distinctive dielectric and piezoelectric properties. When the crystallization of PVDF is 21%, the PZT/PVDF composites show a high dielectric constant (ε) of 165 and a low dielectric loss (tan δ) of 0.03 at 103 Hz, and when the crystallization of PVDF reaches 34%, the piezoelectric coefficient (d33) of PZT/PVDF composites can be up to ca 100 pC N?1. By controlling the crystallization of PVDF, PZT/PVDF composites with excellent dielectric and piezoelectric properties were obtained, which can be employed as promising candidates in high‐efficiency capacitors and as novel piezoelectric materials. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
We fabricated xBaTiO3 (BT)/(1-x)[BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3] (BT-BMT-BF)?+?0.1?wt%MnCO3 composites by spark plasma sintering and investigated the effect of BT content x, BT powder size, and BT-BMT-BF composition on piezoelectric properties. For xBT/(1-x)(0.3BT-0.1BMT-0.6BF) +?0.1?wt%MnCO3 (x?=?0–0.75) composites with a 0.5-µm BT powder, the dielectric constant was increased with x, and the relative density was decreased at x?=?0.67 and 0.75, creating optimum BT content of x?=?0.50 with a piezoelectric constant d33 of 107?pC/N. When a larger 1.5-µm BT powder was utilized for the composite with x?=?0.50, the d33 value increased to 150?pC/N due to the grain size effect of the BT grains. To compensate for a compositional change from the optimum 0.3BT-0.1BMT-0.6BF due to partial diffusion between the BT and 0.3BT-0.1BMT-0.6BF grains, a 0.5BT/0.5(0.275BT-0.1BMT-0.625BF)?+?0.1?wt%MnCO3 composite with the 1.5-µm BT powder was fabricated. We obtained an increased d33 value of 166?pC/N. These results provided a useful composite design to enhance the piezoelectric properties.  相似文献   

15.
0.5[Ba(Zr0.2Ti0.8)O3]–0.5[(Ba0.7Ca0.3)TiO3]/[BZT–BCT]–polyvinylidene difluoride/[PVDF] 0–3 composites were prepared by uniaxial hot-press method for different volume fractions of BZT–BCT ceramic powder in a PVDF polymer matrix. The structural, microstructural and dielectric properties were investigated and discussed. There was an increase in relative permittivity (εr) and dielectric loss (tan δ) of the composites with increase in the volume fraction of the ceramics. At room temperature and at 1 kHz frequency, 0.25[BZT–BCT]–0.75[PVDF] composite showed a highest relative permittivity (εr) ~41.  相似文献   

16.
Polyvinylidene fluoride (PVDF) is a preeminent pyrolytic and piezoelectric polymer. It has been widely studied as an ideal material for wearable flexible sensors or low-power electronic equipment. PVDF/ZnO thin films were prepared by direct writing method, which promoted the ordered arrangement of PVDF molecular chains under the action of electric field and thus improved the crystallinity of the β phase. Meanwhile, the effects of intercalation of ZnO nanoparticles on the crystallinity of PVDF thin films were explored. The results show that appropriate addition of nano-ZnO as nucleating agent can induce the crystallinity of the PVDF film obviously. While the additive amount of nanoparticles was 0.02 wt%, the relative β phase content of the PVDF film can reach 88.92%. Under the double action of adding ZnO nanoparticles and electric field assistance, the dielectric constant of the composite film increases from 6.9 (pure PVDF) to 12.4 (0.03 wt% ZnO) at a frequency of 1 kHz. The d33 value of the film without polarization is up to −9.1 pC/N, the output voltage is increased to 351 mV, and the conductivity of the composite film has been improved.  相似文献   

17.
Lead‐free single crystal (Na1/2Bi1/2)TiO3–1.5 at.%Bi(Zn1/2Ti1/2)O3 (NBT–1.5BZT) with dimension of Φ35 mm × 12 mm was successfully grown by a top‐seeded solution growth technique. The average and local structure were studied by a combination of X‐ray diffraction and Raman spectroscopy. The electric and optical properties of <001>‐oriented single crystals were investigated systematically. Compared with pure NBT, the piezoelectric constant and transmission coefficient were both enhanced, that is, from 62 pC/N and ~60% to 121 pC/N and ~70%, respectively. Furthermore, domain structure observation suggested that the <110>‐oriented tetragonal ferroelastic domains in NBT were suppressed at room temperature with addition of BZT, which was responsible for the improved piezoelectric and optical properties of NBT–1.5BZT single crystal.  相似文献   

18.
Pb(Zr1−xTix)O3 (PZT) ceramics are the most widely used piezoelectric ceramics due to their excellent performance. It has been reported that the direct current poling (DCP) apply on alternating current poling (ACP) relaxor-PbTiO3 ferroelectric crystals can further improve the piezoelectric properties. Herein, we report the dielectric and piezoelectric properties of soft-PZT5 ceramics under DCP, ACP, and ACP + DCP methods. The piezoelectric coefficient d33 of the soft-PZT5 ceramics was 560 pC/N using ACP+DCP at room temperature (RT), which is 4% higher than the ACP-treated sample (540 pC/N) and 24% higher than the DCP-treated sample (450 pC/N). The ideal poling temperatures of DCP and ACP were found to be 120°C and 60°C, showing optimal d33 values of 540 pC/N and 565 pC/N, respectively. The ACP and ACP+DCP samples show the same aging trend. After 30 days of aging, the d33 values of the DCP, ACP, and ACP+DCP soft-PZT5 ceramics were 415 pC/N, 500 pC/N, and 510 pC/N, respectively, showing decreases of 12%, 8%, and 9%, respectively. This work indicates that the ACP+DCP method is an effective method to improve the piezoelectric properties of soft-PZT5 ceramics.  相似文献   

19.
Smart structural composites are multifunctional structural materials which can perform functions such as sensing strain, vibration reduction and are essential because of their relevance to mitigation and structural vibration control. Cement-based piezoelectric composites have been developed as smart structural composites. The goal of this work is to produce cement-based piezoelectric composites using lead zirconate titanate (PZT) and Portland cement (PC) with xPZT–(1 − x)PC (where x = 0.3, 0.6 and 0.9). The composites were pressed together and cured in 100% RH curing chamber for 3 days before measurements. Dielectric constant (r) at room temperature and piezoelectric coefficient (d33) of the 0–3 piezoelectric PZT–Portland cement composites with different PZT content were investigated. The results show these composites have r and d33 values of up to 536 and 87 pC/N, respectively, and there is a good potential for the application of these cement-based piezoelectric composites in civil engineering.  相似文献   

20.
Ternary ceramics of (0.87−x)BiFeO3xPbTiO3–0.13Ba(Zr0.5Ti0.5)O3 (BF–xPT–0.13BZT, 0.27 ≤ x ≤ 0.37) were prepared by the traditional solid state reaction methods. X-ray diffraction results display that BF-xPT-0.13BZT ternary ceramics of ≥ 0.29 exhibit the perovskite structure with dominant tetragonal (T) phases mixed with a small amount of rhombohedral (R) phases. Scanning electron microscopy (SEM) images reveal that the average grain size of BF-xPT-0.13BZT ternary ceramics is in a range of 10–11 μm, increasing first and then decreasing with the increase of PbTiO3 (PT) content. The low tanδ of about 0.015 and high Curie temperature Tc of above 450°C were obtained for BF-xPT-0.13BZT ternary ceramics. Moreover, the fluctuation of piezoelectric coefficient d33 is less than ±10% over a broad temperature range of 30°C–400°C. BF-xPT-0.13BZT ternary ceramics for x = 0.33 possess the maximum Tc and d33 of 470°C and 320 pC/N respectively, with the room temperature resistivity of about 1011 Ω·cm. These results indicate that BF-xPT-0.13BZT ternary ceramics for x = 0.33 with both excellent piezoelectric properties and high Curie temperature have promising applications in high-temperature piezoelectric devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号