首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2019,45(12):15082-15090
The formation and compositions of grain boundary layers are very important factors to improve the electrical properties of CaCu3Ti4O12 (CCTO) ceramics. In present work, the dielectric and nonlinear properties of the CCTO ceramics are enhanced by controlling the Cu-rich phase degree at grain boundary layers. The dense CCTO ceramics were prepared successfully through mixing the nanometer and micrometer powders and using the cold isostatic pressing process. The average grain size of these CCTO ceramics is about 30.71(±11.76) ∼ 62.01(±32.16) μm, and their grain microstructures show the Cu-rich phases at grain boundary layers. The CCTO ceramics with the mass ratios of nanometer and micrometer powders 7:3 display a giant dielectric constant of 5.4 × 104, low dielectric loss of 0.048 at 103 Hz, enhanced nonlinear coefficients of 11.12, as well as the noteworthy breakdown field of 4466.17 V/cm. The complex impedance spectroscopy results indicate that the giant dielectric behavior is due to the electrically heterogeneous grain/grain boundary characteristics from internal barrier layer capacitance (IBLC) model. The lower dielectric loss and the higher breakdown field are attributed to the high resistance grain boundary layers with the Cu-rich phase. The improved nonlinear properties are related to the increased Schottky barrier height at grain boundary. This work may provide a potential way to design the CCTO ceramics with excellent electrical properties from the viewpoint of controlling the response of the Cu-rich phase grain boundary.  相似文献   

2.
Reduction of dielectric loss for CCTO ceramics is a prerequisite for their applications. Considering internal barrier layer capacitance effect, improving the capacitance and grain boundary resistance is an effective way to reduce dielectric loss. Therefore, more conductive Ti3+ and Cu+ ions were introduced to grains by adding carbon to ceramic bodies, improving the permittivity of CCTO ceramics. Annealing was performed to increase the grain boundary resistance. The dielectric loss of the CCTO ceramics thus prepared, which maintain a giant permittivity, is significantly reduced. Specifically, the CCTO ceramic with carbon addition, which was sintered at 1080 °C for 8 h and air annealed at 950 °C for 2 h, exhibits a giant permittivity of about 2.50(5)×104 and a low dielectric loss of less than 0.050(2) from below 20 Hz to 50 kHz at room temperature. Meanwhile, its dielectric loss at 1–10 kHz is less than 0.050(2) from below room temperature to about 100 °C.  相似文献   

3.
The extremely high dielectric constant of the cubic perovskite CaCu3Ti4O12 (CCTO) has attracted increasing attention for a variety of capacitive elements in microelectronic device applications. In this research, the influence of Sr and La replacing Ca and Cu, respectively, to simultaneously controlling the intrinsic properties of grain boundaries in a co-doped CCTO ceramic has been investigated. The preparation was done using high purity compounds milled and mixed by mechano-synthesis and further consolidated by reactive sintering without calcination. Characterization by XRD confirmed the formation of single-phase CCTO ceramic and a residual amount CaTiO3. The microstructure and composition analyzed by SEM/EDX showed a smaller grain size for the co-doped CCTO. Impedance measurements indicated the smallest dielectric loss for the co-doped ceramics compare to pure and single-doped CCTO, while reaching a higher dielectric permittivity than single-doped ceramics. The CCTO-SrLa sample also showed high thermal stability of the dielectric permittivity between 100 and 470?K, and the lowest loss between 200 and 300?K. This behavior was attributed to the lower bulk resistance exhibited by the co-doped sample.  相似文献   

4.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   

5.
Al-doped CaCu3Ti4− x Al x O12− x /2 (CCTO, x =0–0.1) ceramics were prepared by the solid-state reaction, and their electric and dielectric properties were investigated. Al doping has been shown to reduce the dielectric loss remarkably while maintaining a high dielectric constant. At x =0.06, the loss tangent (tan δ) was below 0.06 over the frequency range of 102–104 Hz, and the dielectric constant was 41 000 at 10 kHz. Impedance spectra indicated that Al doping increased the resistivity of the grain boundary by an order of magnitude. The improvement of the dielectric loss in Al-doped CCTO was attributed to the enhanced grain boundary resistivity.  相似文献   

6.
The abnormal grain growth (AGG) behavior of undoped and SiO2-doped CaCu3Ti4O12 (CCTO) ceramics were investigated. With the addition of 2 wt.% SiO2, the AGG-triggering temperature decreased from 1100 to 1060 °C, and the temperature for obtaining a uniform and coarse microstructure decreased from 1140 to 1100 °C. The lowering of the AGG temperature by SiO2 addition was attributed to the formation of a CuO-SiO2-rich intergranular phase at lower temperature. The apparent dielectric permittivity of coarse SiO2-doped CCTO ceramics was ∼10 times higher than that of fine SiO2-doped CCTO ceramics at the frequency of 103–105 Hz. The doping of SiO2 to CCTO ceramics provides an efficient route of improving the dielectric properties via grain coarsening. The correlation between the microstructure and apparent permittivity suggests the presence of a barrier layer near the grain boundary.  相似文献   

7.
CaCu3Ti4O12 (CCTO) ceramics have been processed by solid state reaction and sintered at 1100 °C for different times. A clear increase of the dielectric constant of the material up to values of 6 × 104 has been observed with the sintering time. This increase is accompanied by a limited grain growth and intergranular Cu-oxide phase thickness reduction. The disappearance of the Cu-oxide phase is caused by the incorporation of Cu cations into the grains, contributing to the increase of the dielectric constant. Raman spectroscopy shows the decrease of TiO6 octahedral rotational modes with the sintering time due to the incorporation of Cu cations into the CCTO grains. XANES measurements show that the Cu main oxidation state is Cu2+ and does not change with the sintering time. The fitting of the experimental dielectric constant to the Internal Barrier Layer Capacitance (IBLC) model reveals the change of the intergranular phase dielectric constant, caused by a compositional change due to the incorporation of Cu into the CCTO grains.  相似文献   

8.
Grain boundaries of CaCu3Ti4O12 (CCTO) materials have been shown to play leading role in colossal permittivity. Core-shell design is an attractive approach to make colossal dielectric capacitors by controlling the grain boundaries. Core-shell grains of CCTO surrounded by Al2O3 shell were synthesized by ultrasonic sol-gel reaction from alumina alkoxide precursor. The influence of alumina shell by comparison with bare CCTO grains was studied. Particularly, microstructure, dielectric and electric effects on sintered ceramics are reported. The average grain size and the density are increased compared to undoped CCTO leading to an improvement of permittivity from 58,000 to 81,000 at 1?kHz. Furthermore a decrease of dielectric loss is found in a frequency range of 102–103?Hz. Moreover, the activation energy of grain boundaries is increased from 0.55 to 0.73?eV and the electrical properties such as breakdown voltage, non-linear coefficient and resistivity are improved with the aim of making industrial capacitors.  相似文献   

9.
Abstract

CaCu3–xZnxTi4O12 (x is from 0 to 1·0) polycrystalline samples were fabricated via a two-step solid state reaction process. The lattice parameter of the monophasic CaCu3Ti4O12 phase increased as Zn content increased. Scanning electron microscopy (SEM) images of the CCTO ceramic show bimodal grain size distribution and the grain size decrease largely with the appearance of Zn2TiO4 second phase. The dielectric permittivity of pure CCTO ceramic is ~1·5×104 at f?=?100 Hz. The dielectric constant of the sample largely increased with Zn substitution in the frequency range f<104 Hz. The highest dielectric constant was 6·2×104 at f?=?100 Hz with Zn substitution of x?=?0·8. The improved dielectric properties are believed to be related to the presence of a thin grain boundary barrier layer. The resistivity of the grain boundary decreased largely with Zn substitution as evidenced from the impedance plots.  相似文献   

10.
《Ceramics International》2017,43(5):4366-4371
CaCu3−xRuxTi4O12 (x=0, 0.03, 0.05 and 0.07) electronic ceramics were fabricated using a conventional solid-state reaction method. The microstructure, grain sizes and dielectric properties as well as the impedance behaviours of the ceramics were carefully investigated. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) results indicate that ruthenium (Ru) dopant inhibits the growth of grains during the sintering process by promoting the formation of high melting point oxides of Ca and Ti. The study on the frequency dependence of dielectric properties suggests that Ru doping shifts the dielectric loss peak of CCTO to a much lower frequency, thereby reducing the dielectric loss of CCTO at high frequency (f>1.0 MHz) accordingly. When doped with proper amount of Ru, the high frequency dielectric loss of CCTO is reduced to a very low value (tanδ<0.05). Our study conclusively suggests that Ru-doped CCTO, with sufficiently low dielectric loss and decent permittivity, presents potential applications at high frequency.  相似文献   

11.
Electrical performances are strongly associated with the electrical heterogeneity of grains and grain boundaries for CaCu3Ti4O12 (CCTO) ceramics. In this work, the dielectric ceramics of 0.1Na0.5Bi0.5TiO3-0.9BaTiO3 (NBT-BT) doped CCTO were fabricated by a conventional solid-state reaction method, and the ceramics were sintered at 1100 °C for 6 h. Relatively homogeneous microstructures are obtained, and the average grain sizes are characterized about 0.9∼1.5 μm. Impressively, a significantly enhanced breakdown field of 13.7 kV/cm and a noteworthy nonlinear coefficient of 19.4 as well as a lower dielectric loss of 0.04 at 1 kHz are achieved in the 0.94CCTO-0.06(NBT-BT) ceramics. It is found that the improved electrical properties are attributed to the increased grain boundary resistance of 3.7 × 109 Ω and the Schottky barrier height of 0.7 eV. This is originated from the NBT-BT compound doping effect. This work demonstrates an effective approach to improve electrical properties of CCTO ceramics by NBT-BT doping.  相似文献   

12.
In this study, CaCu3Ti4O12 (CCTO) ceramics were doped with cesium and cerium atoms to possibly improve the electrical properties of these widely used ceramics. In all cases, pure phase perovskites were produced where cesium doping enhanced the grain growth and cerium doping produced grain growth inhibition. The cesium doping showed an improvement in loss tangent performance, in contrast to the cerium doping which showed a negative result. A high dielectric constant >15,000 with a dielectric loss lower than 0.06 was observed for cesium 2.0 mol% doped at high frequencies. These results were related to the change in microstructure and the properties of grain boundary after doping.  相似文献   

13.
CaCu3Ti4O12 (CCTO) ceramics with high dielectric constant (2–4 × 104) and low loss (0.04) were prepared by the sol–gel process and sintered at 1050°C for different times. The sintering time has a sensitive influence on the values of the dielectric constant and nonlinear coefficient. Tailored dielectric constant and nonlinear coefficient can be obtained by selecting a suitable sintering time according to different desired device application. The result of current–voltage characteristics and Cole–Cole plots in a broad temperature range (60–400 K) provide more effective evidence of the high dielectric constant supported by the grain boundary barrier layer (GBBL) capacitors model. Below 150 K, the GBBL capacitors effect weakens and gradually disappears with further decrease of temperature, thus leading the dielectric constant to decrease rapidly. Two values of grain activation energy acting at different temperature for each sample were obtained.  相似文献   

14.
Calcium copper titanate (CCTO) has been synthesized by high temperature solid-state reaction from calcium carbonate, copper (II) oxide, and titanium dioxide as the starting materials. The formation and morphology of CCTO were confirmed by X-ray diffraction, Fourier-transformed infrared spectrophotometry, scanning electron microscopy (SEM), and particle size analysis. In order to develop flexible dielectric materials, acrylonitrile-butadiene rubber (NBR)-based composites were prepared with CCTO content varied from 0 to 120 phr (parts per hundred rubber). The cure characteristics of composites were assessed. High-dielectric constant CCTO particles were blended into NBR to make composites with improved dielectric constant. Results showed that the NBR/CCTO composites had a high dielectric constant (10–20) with low dielectric loss (<0.4) and low conductivity (<10−3 μS/cm) at frequencies up to 106 Hz. However, the higher CCTO loadings had agglomeration in the NBR matrix, and thus tensile strength and elongation at break sharply deteriorated due to poor rubber-filler interactions. The results showed lower storage modulus E′ and a reduction in Tg with the incorporation of CCTO in NBR matrix. Moreover, improved thermal stability of the NBR/CCTO composites was achieved. SEM was used to observe the dispersion of CCTO particles in NBR matrix.  相似文献   

15.
《Ceramics International》2022,48(18):25705-25713
The colossal dielectric response of La-doped CaCu3Ti4O12 ceramics has been probed at room temperature for a frequency of 1Hz–20 MHz. In this work, the La-doped (CaCu3Ti4O12)x samples for x = 0.1, 0.2, and 0.3 have been sintered at 1100 °C using two different heating modes. SEM and EDS analysis investigated the microstructural chrysalis, grain size distribution, and the inhibitions of Cu-rich phase segregation into grain boundaries by the effect of La3+. The presence of main cubic single-phase of CCTO and the diminutive Bragg peak shift due to ion size effect of La3+ and Ca2+ have been identified by XRD for both conventional (CS) and microwave sintered (MWS) samples. XPS study revealed the effect of La3+ on the binding energies of Cu and Ti in CCTO. The dielectric properties namely dielectric constant (?), tan δ, and dielectric relaxation peaks were measured using BDS in which CS and MWS La-doped samples demonstrated (?) ~ >104 and ~ >103 along with low tan δ for x ≥ 0.1 at medium and high frequency (104–107Hz) than pure CCTO.  相似文献   

16.
《Ceramics International》2019,45(12):14652-14662
In this study, the relationship between dielectric properties and sintered sample thickness (d) (0.41–2.74 mm) of CaCu3Ti4O12 (CCTO) ceramics prepared at 1000–1100 °C in air was investigated. Compacted green ceramic bodies in varying weights and sintered at different temperatures were prepared to obtain ceramics with varying thicknesses. The samples were evenly polished on either surface, electroded and measured by a precision LCR meter at 20 Hz–1 MHz. The results showed that the ε′ increased monotonically with increasing sintering temperature and indicated a linear relationship with d for samples sintered at ≥1040 °C, while the ε′ for samples sintered at ≤1030 °C was barely affected. Complex impedance analysis showed that the ρgb was nearly constant with the change of d. The inverse effect of ε′ and ρgb with d can also be observed for the gradual thickness reduction sample sintered at 1040 °C, confirming that the grain boundary plays a key role in the variation of dielectric properties for CCTO ceramics.  相似文献   

17.
The polycrystalline Sm2/3Cu3Ti4O12 (SCTO) ceramics have been prepared by solid-state reaction. The crystallinity of the compound has been investigated by Rietveld refinement which has revealed a cubic structure with space group Im3. It is observed that at low frequencies, SCTO ceramic exhibits tremendously high values of dielectric permittivity ε′, larger than 32,000, at room temperature. Two distinct, thermally triggered, dielectric relaxations have been noted. This mechanism has been confirmed through impedance analysis of the ceramics. The complex impedance plane shows three semicircles, which confirm the existence of two dielectric relaxations in SCTO ceramics. In general, the electrical as well as dielectric behavior of SCTO ceramics are seen to be reasonably analogous to those of CaCu3Ti4O12 (CCTO) ceramics. The emergence of the enormous dielectric constant in SCTO ceramic is accredited to the combined effect of polarization both at the sample-electrode interface as well as at the insulating grain boundary interface. The SCTO ceramics are identical to the CCTO ceramics in their structure and composition and hence, as the above results indicate, the IBLC effect mechanism, originally put forward for CCTO ceramics, is furthermore plausible to account for the mammoth values of dielectric constant in SCTO ceramics.  相似文献   

18.
《Ceramics International》2023,49(13):21502-21509
CaCu3Ti4O12 (CCTO) particles were produced from a CuO–CaCO3–TiO2 peroxo-hydroxide precursor material in NaCl–KCl and Na2SO4–K2SO4 salt mixtures via the molten-salt synthesis method at different salt-to-precursor mass ratios. Regular-shaped CCTO particles of cubes, rods, and polyhedrons can be obtained at large salt-to-precursor mass ratios of above 50:1. With the extension of sintering time, the particle shape is more regular and the size is larger. Long micro rods with a length of about 53 μm can be obtained at a mass ratio of 125:1 and a long sintering time of 72 h in sulfate salts. The formation mechanisms are also discussed and the results suggest that a large salt-to-precursor mass ratio may provide a sufficient number of Na − K ions to sufficiently modify the particle shape and form regular-shaped cubes and rod-like particles. At the same time, CCTO ceramics synthesized by Na2SO4–K2SO4 molten-salt method show good dielectric properties, with a dielectric constant higher than 104 and a loss factor less than 0.45 in the range of 20 Hz to 1 MHz.  相似文献   

19.
CaCu3-xZnxTi4O12 ceramics (x = 0, 0.05, 0.10) were successfully prepared by a conventional solid-state reaction method. Their structural and dielectric properties, and nonlinear electrical response were systematically inspected. The X-ray diffraction results indicated that single-phase CaCu3Ti4O12 (JCPDS no. 75–2188) was obtained in all sintered ceramics. Changes in the lattice parameter are well-matched with the computational result, indicating an occupation of Zn2+ doping ions at Cu2+ sites. The overall tendency shows that the average grain size decreases when x increases. Due to a decrease in overall grain size, the dielectric permittivity of CaCu3-xZnxTi4O12 decreases expressively. Despite a decrease in the dielectric permittivity, it remains at a high level in the doped ceramics (~3,406–11,441). Besides retention in high dielectric permittivity, the dielectric loss tangent of x = 0.05 and 0.10 (~0.074–0.076) is lower than that of x = 0 (~0.227). A reduction in the dielectric loss tangent in the CaCu3-xZnxTi4O12 ceramics is closely associated with the enhanced grain boundary response. Increases in grain boundary resistance, breakdown electric field, and conduction activation energy of grain boundary as a result of Zn2+ substitution are shown to play a crucial role in improved grain boundary response. Furthermore, the XPS analysis shows the existence of Cu+/Cu2+ and Ti3+/Ti4+, indicating charge compensation due to the loss of oxygen lattice. Based on all results of this work, enhanced dielectric properties of the Zn-doped CCTO can be explained using the internal barrier layer capacitor model.  相似文献   

20.
《Ceramics International》2016,42(10):12005-12009
The effects of small amounts of lithium fluoride sintering aid on the microstructure and dielectric properties of CaCu3Ti4O12 (CCTO) ceramics were investigated. CCTO polycrystalline ceramics with 0.5 and 1.0 mol% LiF, and without additive were prepared by solid state synthesis. Good densification (>90% of the theoretical density) was obtained for all prepared materials. Specimens without the sintering aid and sintered at 1090 °C exhibit secondary phases as an outcome of the decomposition reaction. The mean grain size is controlled by the amount of LiF in specimens containing the additive. Impedance spectroscopy measurements on CaCu3Ti4O12 ceramics evidence the electrically heterogeneous nature of this material consisting of semiconductor grains along with insulating grain boundaries. The activation energy for grain boundary conduction is lower for specimens prepared with the additive, and the electric permittivity reached 53,000 for 0.5 mol% LiF containing CCTO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号