首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B6.5C-TiB2-SiC-BN composite ceramics were prepared by a novel solid-state reaction using TiCN, B, and Si as raw materials. The final products obtained by hot pressing at 1950 °C possessed a fine microstructure, homogeneous distribution, and excellent mechanical properties. The obtained bulk B6.5C-TiB2-SiC-BN composite ceramic shows a high relative density (98.8 %). The mechanical properties of the composites are anisotropic because of the orientation growth and structural characteristics of TiB2 and h-BN grains. The values of hardness, bending strength, and fracture toughness measured along the hot-pressing direction were 19.6 GPa, 801 MPa, and 4.30 MPa m1/2, respectively, which were higher than those measured perpendicular to the hot-pressing direction. The formation of twin structures in B6.5C and SiC grains and the crack deflections induced by h-BN and TiB2 grains are beneficial for improving the mechanical properties of these composites.  相似文献   

2.
Large size high density h-BN/ZrO2 composites (ø = 110 mm, h = 15 mm) were rapidly prepared by spark plasma sintering (SPS) with sintering cycle 20 min. The effects of additives on the mechanical properties, microstructure evolution, and corrosion resistance of the h-BN/ZrO2 composites were studied. The Al2O3, MgO, SiO2, La2O3 and ZrO2 rapidly formed heterogeneous eutectic crystals under the action of SPS. The low eutectic compounds significantly promoted the diffusion of h-BN or ZrO2, also increased the density. The flexural strength of h-BN/ZrO2 composites could reach 196.31 MPa, and the apparent porosity was only 0.42 %. The additives are combined with zirconia to form a high viscosity eutectic, whose corrosion resistance to molten steel is obviously better than that of single ZrO2. The corrosion depth of h-BN/ZrO2 composites was only 114 µm after corroded in molten steel at 1550 °C for 80 min. The comprehensive properties of h-BN/ZrO2 composites were obviously improved by appropriate additives.  相似文献   

3.
ABSTRACT

Carbon fibre-reinforced lithium aluminosilicate matrix composites (Cf/LAS) with different SiB6 contents were prepared by the hot pressing method to assess their mechanical properties and oxidation resistance. Composite that was incorporated with 2 wt-% SiB6 exhibited the highest flexural strength of 500 ± 22.3 MPa. Weight loss and residual strength of Cf/LAS modified by SiB6 were analysed. The results indicated that the addition of SiB6 had a remarkable effect on improving the oxidation resistance for Cf/LAS. To establish a direct relationship among interfacial microstructure, mechanical and oxidation behaviour of the studied composites, their connection was examined and discussed.  相似文献   

4.
We prepared B4C/Al laminated composites via ice-templating and gas-aided pressure infiltration and investigated the effects of TiO2 addition on the microstructures and mechanical properties of the composites. The incorporation of TiO2 led to the formation of TiB2 after sintering, reduced the formation of harmful phases and increased the strength of ceramic architectures. However, its excessive addition resulted in the cracking of ceramic layers and the formation of metal strips after Al infiltration. The bending strength, fracture toughness and work of fracture of the composites first increased and then decreased with increasing initial TiO2 content, reaching maxima of 420?±?20?MPa, 44?±?2?MPa?m1/2 and 5002?±?175?J?m?2, respectively. The specific strength and toughness are comparable to those of titanium alloys. Furthermore, fracture modes and toughening mechanisms were thoroughly addressed by analyzing crack propagation paths and fracture surface morphologies. Crack deflection and metal bridging are two primary extrinsic toughening mechanisms.  相似文献   

5.
Novel TiC-based composites were synthesized by reactive hot-pressing at 1800 °C for 1 h with ZrB2 addition as a sintering aid for the first time. The effects of ZrB2 contents on the phase composition, microstructure evolution, and mechanical properties were reported. Based on the reaction and solid solution coupling effects between ZrB2 and TiC, the product ZrC may be partially or completely dissolved into the TiC matrix, and then phase separation within the miscibility gap is observed to form lamellar nanostructured ZrC-rich (Zr, Ti)C. The TiC-10 mol.% ZrB2 (starting batch composition) exhibits good comprehensive mechanical properties of hardness 27.7 ± 1.3 GPa, flexural strength 659 ± 48 MPa, and fracture toughness of 6.5 ± 0.6 MPa m1/2, respectively, which reach or exceed most TiC-based composites using ceramics as sintering aids in the previous reports.  相似文献   

6.
《Ceramics International》2022,48(17):24431-24438
As electronics become portable and compact with concomitant thermal issues, the demand for high-performance thermal interface materials has increased. However, the low thermal conductivity of polymers and the poor dispersion of fillers impede the realization of high filler loading composites, and this in turn limits the increase in thermal conductivity. To overcome this, multifunctional epoxyorganosiloxanes (MEOSs) were synthesized and used to fabricate thermally conductive composites in this study. In the first part of this study, the effect of the molecular weights of MEOSs on the curing behaviors of the MEOSs/trimethylolpropane tris(3-mercaptopropioante)/1-methyl imidazole systems was investigated by a DSC analysis. Both the nonisothermal and isothermal curing of the epoxy compositions (ECs) verified that the reaction rate of EC-1 containing MEOS-1 with lower molecular weight was faster than that of EC-2. In addition, mechanical properties of the cured EC-1 were superior to those of its counterpart because of a higher density in crosslinking. In the second part, EC-1 was admixed with h-BN to fabricate thermally conductive (TC) composites. Owing to the low viscosity (1.6 Pa s at 0.1 Hz) of EC-1, a TC-3 composite containing 45 wt% h-BN fillers was obtained, and the in-plane and through-plane thermal conductivity of the cured TC-3 composite reached 3.55 ± 0.29 Wm?1K?1 and 1.08 ± 0.08 Wm?1K?1, respectively. Furthermore, the tensile modulus of the cured TC-3 was measured as 76.3 ± 6.1 MPa, which was 9.1 times higher than that of the cured EC-1. Both the high thermal conductivity and good mechanical properties of the cured TC-3 composite were ascribed to the percolation of h-BN networks stemming from the high filler loading.  相似文献   

7.
《Ceramics International》2017,43(3):3439-3442
C/ZrC-SiC composites with a density of 3.09 g/cm3 and a porosity of 4.8% were prepared by reactive melt infiltration and vapour silicon infiltration. The flexural strength and modulus were 235 MPa and 18.3 GPa, respectively, and the fracture toughness was 7.0 MPa m1/2. The formation of SiC and ZrSi2 during vapour silicon infiltration, at the residual cracks and pores in the C/ZrC, enhanced the interface strength and its mechanical properties. The high flexural strength (223 MPa, c. 95% of the original value) after oxidation at 1600 °C for 10 min indicated the excellent oxidation resistance of the composites after vapour silicon infiltration. The mass loss and linear recession rate of the composites were 0.0071 g/s and 0.0047 mm/s, respectively and a fine ablation morphology was obtained.  相似文献   

8.
9.
《Ceramics International》2017,43(2):2170-2173
HfB2-x vol%CNTs (x=0, 5, 10, and 15) composites are prepared by spark plasma sintering. The influence of CNTs content and sintering temperature on densification, microstructure and mechanical properties is studied. Compared with pure HfB2 ceramic, the sinterability of HfB2-CNTs composites is remarkably improved by the addition of CNTs. Appropriate addition of CNTs (10 vol%) and sintering temperature (1800 °C) can achieve the highest mechanical properties: the hardness, flexural strength and fracture toughness are measured to be 21.8±0.5 GPa, 894±60 MPa, and 7.8±0.2 MPa m1/2, respectively. This is contributed to the optimal combination of the relative density, grain size and the dispersion of CNTs. The crack deflection, CNTs debonding and pull-out are observed and supposed to exhaust more fracture energy during the fracture process.  相似文献   

10.
To enhance the properties of epoxy composites, the biphenyl diol formaldehyde resin (BPFR) and glycidyloxypropyl polyhedral oligomeric silsesquioxane (G-POSS) were synthesized and used for modification of fiber-glass reinforced composites of epoxy resin (ER). The BPFR was employed to cure epoxy resin with different G-POSS contents and the laminates of fiber-glass reinforced hybrid composites prepared from BPFR, ER and G-POSS. The dynamic mechanical properties, thermal properties, mechanical and electrical properties of the hybrid composites were characterized by dynamic mechanical analyzer, thermogravimetric analyzer and electroproperty detector. The results showed that the T g of the composites is increased with the addition of G-POSS. When the content of G-POSS is 5 wt%, the tensile and impact strength of the hybrid composites are 249.87 MPa and 63.83 kJ/m2, respectively, which are all 30 % higher than those of non-added composites. At G-POSS content of 7 wt%, T g of the material is 9.6 °C higher than pure BPFR/ER composite, and the initial decomposition temperature, T id, is enhanced by about 29 °C. Dielectric constant, ε, and dielectric loss, tanδ, of the hybrid composites are between 0.53–0.7 and between 0.004–0.012, respectively.  相似文献   

11.
Hexagonal boron nitride (h-BN) is an ideal candidate material for electrical and electronic systems due to its excellent performance. However, the addition of platelet-like h-BN leads to a dramatic increase of viscosity of composites and anisotropic thermal conductivity of composites. Herein, modified h-BN (m-BN) was coated onto spherical α-Al2O3 via chemical adhesive, and core-shell structured hybrid spherical filler (m-BN@Al2O3) was prepared. Furthermore, the microstructure, rheology, mechanical properties, and thermal conductivity of hybrid filler/polydimethylsiloxane (PDMS) were studied. At 60 vol% filler loading, the thermal conductivity of m-BN@Al2O3/PDMS is up to 2.23 W·m−1·K−1, which is 86% higher than that of Al2O3/PDMS and the ratio of in-plane diffusivity to through-plane diffusivity decreases from 2.0 to 1.0. At meanwhile, the viscosity of m-BN@Al2O3/PDMS is about one fourth of the viscosity of m-BN/Al2O3/PDMS. This simple and versatile strategy opens a pavement for enhancing the thermal conductivity of polymer and has great potential in high-frequency communication.  相似文献   

12.
Alumina (Nextel? 610) fibre reinforced YAG-ZrO2 matrix composites were successfully joined by using different brazing alloys, metallic interlayers and a glass-ceramic. All joints were mechanically stable and free of cracks. Three commercial brazing alloys and a new alloy based on Ti/Cu/Al interlayers were selected to join these composites for applications in a non-oxidizing environment. A glass-ceramic based on SiO2-Al2O3-CaO-MgO was developed in case the joined component needs to be oxidation resistant. To evaluate the thermal stability, all joined composites were aged up to 100 h in air at 550 °C for brazing joints or 850 °C and 930 °C for glass-ceramic joints. The mechanical strength was measured using single lap and four point bending tests before and after ageing. Four point bending tests on glass-ceramic joined samples showed an average joint strength of about 70 MPa which is 35% of as-received composites.  相似文献   

13.
In order to further improve the flexural strength of lithium disilicate glass-ceramic, surface strengthening by ion exchange using Rb, Cs nitrates has been studied for the first time. The influences of ion exchange using rubidium and cesium salts on the flexural strength and corrosion resistance have been investigated. It was found that the mechanical properties of the lithium disilicate glass-ceramic could be increased greatly by the ion exchange in rubidium nitrate (RbNO3) salt. After ion exchange for 4?h in RbNO3 salt, the flexural strength and microhardness increased from 169?MPa and 587?kgf?mm?2 (5.75?Gpa) of the original lithium disilicate glass-ceramic to 493?MPa and 654?kgf?mm?2 (6.4?Gpa), respectively. Moreover, the corrosion resistance of the lithium disilicate glass-ceramic was further improved by ion exchange in rubidium and cesium nitrate salts. Furthermore, the maximum thickness of the ion exchange layer using RbNO3 and CsNO3 was only 4.3?µm and 0.45?µm respectively. Such a thin exchange layer, which will only require very low Rb+, Cs+ ions exchange amount, indicates that the molten salts of RbNO3 and CsNO3 can be reused for many times. So it is suggested that surface strengthening of lithium disilicate glass-ceramic by ion exchange using Rb, Cs nitrates is cost-efficient and very suitable for the actual production and applications.  相似文献   

14.
In this study, three-dimensional silicon nitride fiber-reinforced silicon nitride matrix (3D Si3N4f/BN/Si3N4) composites with a boron nitride (BN) interphase were fabricated through chemical vapor infiltration. Through comparing the changes of microstructure, thermal residual stress, interface bonding state, and interface microstructure evolution of composites before and after heat treatment, the evolution of mechanical and dielectric properties of Si3N4f/BN/Si3N4 composites was analyzed. Flexural strength and fracture toughness of composites acquired the maximum values of 96 ± 5 MPa and 3.8 ± 0.1 MPa·m1/2, respectively, after heat treatment at 800 °C; however, these values were maintained at 83 ± 6 MPa and 3.1 ± 0.2 MPa·m1/2 after heat treatment at 1200 °C, respectively. The relatively low mechanical properties are mainly attributed to the strong interface bonding caused by interfacial diffusion of oxygen and subsequent interfacial reaction and generation of turbostratic BN interphase with relatively high fracture energy. Moreover, the Si3N4f/BN/Si3N4 composites also displayed moderate dielectric constant and dielectric loss fluctuating irregularly around 5.0 and 0.04 before and after heat treatment, respectively. They were mainly determined based on the intrinsic properties of materials system and complex microstructure of composites.  相似文献   

15.
Unidirectional (UD) silicon carbide (SiC) fiber-reinforced SiC matrix (UD SiCf/SiC) composites with CVI BN interphase were fabricated by polymer infiltration-pyrolysis (PIP) process. The effects of the anisotropic distribution of SiC fibers on the mechanical properties, thermophysical properties and electromagnetic properties of UD SiCf/SiC composites in different directions were studied. In the direction parallel to the axial direction of SiC fibers, SiC fibers bear the load and BN interphase ensures the interface debonding, so the flexural strength and the fracture toughness of the UD SiCf/SiC composites are 813.0 ± 32.4 MPa and 26.1 ± 2.9 MPa·m1/2, respectively. In the direction perpendicular to the axial direction of SiC fibers, SiC fibers cannot bear the load and the low interfacial bonding strengths between SiC fiber/BN interphase (F/I) and BN interphase/SiC matrix (I/M) both decrease the matrix cracking stress, so the corresponding values are 36.6 ± 6.9 MPa and 0.9 ± 0.5 MPa?m1/2, respectively. The thermal expansion behaviors of UD SiCf/SiC composites are similar to those of SiC fibers in the direction parallel to the axial direction of SiC fibers, and are similiar to those of SiC matrix in the direction perpendicular to the axial direction of SiC fibers. The total electromagnetic shielding effectiveness (EM SET) of UD SiCf/SiC composites attains 32 dB and 29 dB when the axial direction of SiC fibers is perpendicular and parallel to the electric field direction, respectively. The difference of conductivity in different directions is the main reason causing the different SET. And the dominant electromagnetic interference (EMI) shielding mechanism is absorption for both studied directions.  相似文献   

16.
SiC–Zr2CN composites were fabricated by conventional hot pressing from β-SiC and ZrN powders with 2 vol% equimolar Y2O3–Sc2O3 as a sintering additive. The effects of the ZrN addition on the room-temperature (RT) mechanical properties and high-temperature flexural strength of the SiC–Zr2CN composites were investigated. The fracture toughness gradually increased from 4.2 ± 0.3 MPa·m1/2 for monolithic SiC to 6.3 ± 0.2 MPa·m1/2 for a SiC–20 vol% ZrN composite, whereas the RT flexural strength (546 ± 32 MPa for the monolithic SiC) reached its maximum of 644 ± 87 MPa for the SiC–10 vol% ZrN composite. The monolithic SiC had improved strength at 1200°C, whereas the SiC–Zr2CN composites could not retain their RT strengths at 1200°C. The typical flexural strength values of the SiC–0, 10, and 20 vol% ZrN composites at 1200°C were 650 ± 53, 448 ± 31, and 386 ± 19 MPa, whereas their RT strength values were 546 ± 32, 644 ± 87, and 528 ± 117 MPa, respectively.  相似文献   

17.
Spark plasma sintering (SPS) is an advanced sintering technique because of its fast sintering speed and short dwelling time. In this study, TiB2, Y2O3, Al2O3, and different contents of B4C were used as the raw materials to synthesize TiB2-B4C composites ceramics at 1850°C under a uniaxial loading of 48 MPa for 10 min via SPS in vacuum. The influence of different B4C content on the microstructure and mechanical properties of TiB2-B4C composites ceramics are explored. The experimental results show that TiB2-B4C composite ceramic achieves relatively good comprehensive properties and exceptionally excellent flexural strength when the addition amount of B4C reaches 10 wt.%. Its relative density, Vickers hardness, fracture toughness, and flexural strength reach to 99.20%, 24.65 ± .66 GPa, 3.16 MPa·m1/2, 730.65 ± 74.11 MPa, respectively.  相似文献   

18.
To protect carbon/carbon composites against ablation at ultra-high temperature, a novel HfC-SiC gradient coating was fabricated by a facile one-step chemical vapor co-deposition. The phase composition, microstructure, bonding strength and ablation behaviour were investigated, and the mechanical properties of ablated coatings were characterized as well. The bonding strength of HfC-SiC gradient coating is 19.6?±?0.5?N (176% higher than that of HfC coating). HfC-SiC gradient coating shows excellent ablation resistance under oxyacetylene flame. The mass and linear ablation rate of HfC-SiC coating were only 0.153?±?0.02?mg·s?1 and ?0.998?±?0.08?μm·s?1, respectively. After ablation for 60?s, the hardness and elastic modulus of ablated HfC-SiC gradient coating are higher than those of ablated HfC coating. The excellent ablation resistance of HfC-SiC gradient coating results from its high bonding strength and the adhesion effect of Hf-Si-O sticky glass phase.  相似文献   

19.
Carbon/carbon-boron nitride (C/C-BN) composites were manufactured by adding hexagonal boron nitride (h-BN) powders into carbon fiber preform and a subsequent chemical vapor infiltration (CVI) process for deposition of pyrolytic carbon (PyC). Microstructure and oxidation behavior of carbon/carbon composites with 9?vol% h-BN (C/C-BN9) were studied in comparison to carbon/carbon (C/C) composites. Results showed that with the addition of h-BN powders, a regenerative laminar (ReL) PyC with higher texture was achieved. Note that the introduction of h-BN powder make great contributes to graphitization degree of PyC, leading to larger oxidation activation energy. Moreover, under an air atmosphere, h-BN started to oxidize above 800?°C, and generated molten boron oxide (B2O3) which prohibited oxygen diffusion by filling in pores, cracks and other defects. As these reasons mentioned above, after oxidation tests under an air atmosphere, mass losses of C/C-BN9 composites were lower than that of C/C composites at all test temperatures (600–900?°C), indicating that the oxidation resistance of C/C-BN9 composites is better than that of C/C composites.  相似文献   

20.
Efficient joining materials and techniques are of critical importance for the integration of CMCs in high performance structures. Continuous oxide fiber Nextel? 610/alumina-zirconia composites were successfully joined to themselves by using a novel glass-ceramic based on the SiO2-CaO-Al2O3-MgO-Y2O3-ZrO2 system.Crystallization kinetic of the novel glass-ceramic was studied using Matusita, Sakka and Ozawa equations. Single lap off-set shear tests and four-point bending tests were performed at room temperature and at 850 °C to investigate the mechanical strength of the joints. Thermal ageing was performed at 850 °C for 100 h in air to check the thermal stability of the joined components. The results showed that the joints were oxidation resistant and the joined interfaces were well bonded. Single lap off-set shear tests on joined samples resulted in delamination of the composites. The average flexural strengths of the joined samples were 71 MPa and 81 MPa, at room temperature and at 850 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号