首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoscale ferroelectric materials often exhibit a scaling effect of dielectric and piezoelectric properties with thickness. In this work, we demonstrate that a similar scaling effect can also be observed in BaTiO3 and Ba0.83Sr0.17TiO3 ceramics with a sub-millimeter thickness, as manifested by a reduction of weak-field dielectric constant near the Curie temperature, an increase of the coercive field, and a reduction of piezoelectric response with a reduction of sample thickness, especially for the ceramic with a thickness below 0.5 mm. We propose that the scaling effect could be explained by the presence of surface layers with a stabilized ferroelectric phase and a higher coercive field on ferroelectric ceramics. Because the thickness of the surface layers is typically ~10 μm, our results indicate the surface effect may not be negligible when the dimensions of the ferroelectric materials are in millimeter or sub-millimeter scale. This study is important for the understanding of the scaling effect observed in ferroelectric ceramics.  相似文献   

2.
The ultra-thin multilayer ceramic capacitors (MLCCs) with layer thickness less than 1 μm or even 0.5 μm are in urgent demand due to the rapid development of modern electronic industries. Notably, the dielectric and ferroelectric properties of nanograined BaTiO3-based ceramics, which are widely used as dielectric materials in MLCCs, are highly related to grain size. In this work, nanograined BaTiO3-based ceramics with various grain sizes (50-100 nm) were prepared via the chemical coating method. The grain size effect on the dielectric and energy storage properties were systematically investigated. TEM and EDS images demonstrate that the typical core-shell structure is obtained inside ceramic grains even if the grain size is reduced to 50 nm. The fine-grain ceramic displays a lower maximal polarization but a higher breakdown strength, which ascribes to its weaker ferroelectric contribution and higher grain boundary ratio, respectively. As a result, it is confirmed that there exists an optimal grain size around 70 nm where maximum discharge energy density is achieved under the synergy effect of breakdown strength and polarization, which is also verified by a finite element analysis based on a modified hyperbolic tangent model. All these features provide important guidance towards the design of ultra-thin layer MLCCs by optimizing the dielectric properties and energy storage performance while pursuing miniaturization.  相似文献   

3.
Ferroelectric materials are well‐suited for a variety of applications because they can offer a combination of high performance and scaled integration. Examples of note include piezoelectrics to transform between electrical and mechanical energies, capacitors used to store charge, electro‐optic devices, and nonvolatile memory storage. Accordingly, they are widely used as sensors, actuators, energy storage, and memory components, ultrasonic devices, and in consumer electronics products. Because these functional properties arise from a noncentrosymmetric crystal structure with spontaneous strain and a permanent electric dipole, the properties depend upon physical and electrical boundary conditions, and consequently, physical dimension. The change in properties with decreasing physical dimension is commonly referred to as a size effect. In thin films, size effects are widely observed, whereas in bulk ceramics, changes in properties from the values of large‐grained specimens is most notable in samples with grain sizes below several micrometers. It is important to note that ferroelectricity typically persists to length scales of about 10 nm, but below this point is often absent. Despite the stability of ferroelectricity for dimensions greater than ~10 nm, the dielectric and piezoelectric coefficients of scaled ferroelectrics are suppressed relative to their bulk counterparts, in some cases by changes up to 80%. The loss of extrinsic contributions (domain and phase boundary motion) to the electromechanical response accounts for much of this suppression. In this article, the current understanding of the underlying mechanisms for this behavior in perovskite ferroelectrics is reviewed. We focus on the intrinsic limits of ferroelectric response, the roles of electrical and mechanical boundary conditions, grain size and thickness effects, and extraneous effects related to processing. In many cases, multiple mechanisms combine to produce the observed scaling effects.  相似文献   

4.
0.70BiFeO3-0.30BaTiO3 (0.70BF-0.30BT) ceramics have been widely concerned because of their potential applications for high-temperature piezoelectric devices. In this work, a series of dense 0.70BF-0.30BT ceramics with average grain size variation from 0.55 to 6.0 μm were prepared. XRD results indicate that 0.70BF-0.30BT ceramics show the coexistence of rhombohedral and pseudo-cubic phases and the volume fraction of the rhombohedral phase increase with the grain size. The dielectric, ferroelectric and piezoelectric properties increase with the grain size initially from 0.55 to 5.0 μm and then decrease slightly. Values of d33, Pr, and εr, of 0.70BF-0.30BT ceramics with the grain size of 5.0 μm are 185 pC/N, 21.2 μC/cm2, and 638, respectively, about five times higher than those ceramics with fine-grain of 0.55 μm. Of particular importance is that 0.70BF-0.30BT ceramics with large grain sizes possess better piezoelectric thermal stability due to the much stabler poled domain state with the rising temperature. The detailed structural studies indicate that the enhanced electric properties are owing to the significantly improved domain motion and the increased lattice distortion. This clarifying the relationship between electrical properties and grain size offers a novel way of improving the performances of piezoceramics.  相似文献   

5.
《Ceramics International》2016,42(13):14635-14641
Thick and dense ceramic films of lead-free 0.94Na0.5Bi0.5TiO3-0.06 BaTiO3 (NBT-BT) composition were elaborated by aerosol deposition method (ADM) at room temperature. A powder of suitable grain size was elaborated by solid state reaction. Using this powder, two samples were elaborated by ADM respectively on glass and metallic substrates, in order to check for microstructure and electrical properties. This process allowed obtaining a thick film (3.2 µm) with dense microstructure. Measurement of electrical properties revealed a lossy dielectric behavior indicating interfacial phenomena at the electrode–film interface. The measurement of the ferroelectric hysteresis cycle does not show any characteristics of a ferroelectric behavior, but corresponds well to the one of a lossy non-linear dielectric. The absence of ferroelectricity is probably due to the low grain size of the obtained thick film (130 nm). Further experiments are in progress in order to try to obtain ferroelectric properties.  相似文献   

6.
《Ceramics International》2020,46(7):9154-9160
Magnetoelectric composite materials have attracted more and more attention because of their coupling of ferroelectricity and ferromagnetism. It is a hotspot to realize the combination of ferromagnetic phase and ferroelectric phase. In this work, we used a new strategy to prepare CoFe2O4/BaTiO3 composite ceramics: firstly, porous ferromagnetic CoFe2O4 phase was prepared by annealing of MOFs (metal organic frameworks) precursor Fe3[Co(CN)6]2. And then, the ferroelectric BaTiO3 phase in-situ grew in the pores of CoFe2O4 by a hydrothermal method. In the end, the CoFe2O4/BaTiO3 composite ceramics sintered at different temperatures have been synthesized. The effects of sintering temperature on the structure, dielectric and ferroelectric properties have also been studied. Because the crystallinity and density increase with the increase of sintering temperature, the composite ceramic sintered at 1200 °C shows the best dielectric properties. It is found that sintering temperature has little effect on the ferroelectric and magnetic properties of ceramics. Taking the CoFe2O4/BaTiO3 composite ceramic sintered at 1200 °C as an example, derived from the interaction between the ferromagnetic CoFe2O4 phase and ferroelectric BaTiO3 phase, the applied magnetic field lead to the reduction of Pr and Ec.  相似文献   

7.
《Ceramics International》2016,42(7):8206-8211
To investigate how grain size affects the dielectric, ferroelectric, and piezoelectric properties of Mn-modified 0.67BiFeO3–0.33BaTiO3 ceramics, we prepared samples with a wide variety of grain sizes from 4.1 μm to 0.59 μm via a conventional solid-state process that use the normal and the two-step sintering methods. Small-signal dielectric measurements show that all the samples exhibit a relaxor-like behavior and that grain size has little influence on the room-temperature dielectric permittivity. For grain sizes below 2 μm, the remanent polarization Pr and piezoelectric coefficient d33 decrease with the grain size, whereas they remain almost constant near Pr = 27 μC/cm2 and d33 = 70 pC/N in samples with grain sizes exceeding 2 μm. The mechanism underlying the observed grain size effect is discussed in terms of the electric-field-induced formation of macroscopic ferroelectric domains.  相似文献   

8.
9.
The grain-size effects of the direct piezoelectric coefficient (d33) and the converse piezoelectric coefficient (d33*) of BaTiO3 ceramics with different Ba/Ti ratios were systematically explored. It was found that both d33 and d33* exhibited strong grain size (g) dependences for BaTiO3 ceramics with various Ba/Ti ratios. Although d33 showed similar grain-size dependence for all the Ba/Ti ratios except a subtle shift of the critical grain size from 1?μm to 3?μm, two entirely different grain-size dependence of d33* were observed. By carefully examining the microstructure and ferroelectric properties of the ceramics, the variations of domain configurations and maximum polarization of BaTiO3 ceramics with different Ba/Ti ratios were considered to be responsible for the different grain-size dependence of d33 and d33*, respectively.  相似文献   

10.
Dielectric, ferroelectric, and piezoelectric properties of both random and textured Mn–PMN–PZT ceramics were characterized under uniaxial stress. Textured ceramics exhibit a large piezoelectric response under uniaxial pressure; the bias field piezoelectric constant is higher than 700 pC/N when pressure is below 50 MPa. Moreover, textured ceramics also show better depolarization resistance under uniaxial stress fields; overall, 30% of the origin performance will remain when stress approaches 200 MPa, but for random ceramics, it is only 10%. The ferroelectricity of both random and textured ceramics is suppressed by uniaxial compression. Ec, Pr, Ei, and dissipation energy all decrease with increasing uniaxial stress. In addition, phase-field simulation was used to better understand the polarization-changing effects on piezoelectric and dielectric performance. The uniaxial stress causes polarization rotation and increases the angle between polarization and the electric field, which is an important factor leading to the increase of the dielectric constant.  相似文献   

11.
Dense nanocrystalline BaTiO3 ceramics are prepared in a single step by the Cold Sintering Process at 300 °C, under a uniaxial pressure of 520 MPa for 12 h using a molten hydroxide flux. Transmission electron microscopy reveals a dense microstructure with sharp grain boundaries. The average grain sizes are 75−150 nm depending on the flux amount. The dielectric permittivity is 700–1800 at room temperature at 106 Hz, with a dielectric loss, tan δ ∼ 0.04. The difference in permittivity and phase transition behavior are explained in terms of the intrinsic size effect of the BaTiO3. The nanocrystalline BaTiO3 ceramics still shows a macroscopic ferroelectric switching via a hysteresis loop. This work demonstrates that cold-sintering process could enable the densification of ferroelectric oxides in a single step. Futhermore, comparable dielectric properties to reported values for nanocrystalline grains are obtained, but at this time, with the lowest processing temperatures ever used.  相似文献   

12.
Ferroelectric and piezoelectric properties of BaTiO3 and Al-doped BaTiO3 ceramics were investigated. The ferroelectric study demonstrated that, by doping Al3+ ions in the A-site of BaTiO3, the polarization–electric field loop exhibited enhanced remnant polarization (from 12 to 17.5  μC/cm2), saturation and switching. In addition, the piezoelectric constant (d33) increased with Al-doping for both static and dynamic strain values (from 75 to 135 and from 29.2 to 57.9 pC/N, respectively, at a maximum applied electric field of 16 kV/cm). Furthermore, the dielectric constant values increased and both the dielectric loss factor and leakage current decreased, even though the transition temperature shifted to lower temperature (from 121 to 113 °C) for the Al-doped sample. Therefore, the Al-doped BaTiO3 has adjustable piezoelectric and ferroelectric properties.  相似文献   

13.
BiFeO3-based materials are expected to have both ferroelectricity and ferromagnetism simultaneously. In this study, effects of Na-doping (0.5, 1.0, 3.0, and 5.0 mol%) on ferromagnetic and ferroelectric properties of 0.75BiFeO3–0.25BaTiO3 ceramics which have been fabricated by the solid state reaction technique are studied. The effects of Na-doped 0.75BiFeO3–0.25BaTiO3 ceramics on the crystal structure, and magnetic and electrical properties were investigated and discussed. Rhombohedrally distorted 0.75BiFeO3–0.25BaTiO3 showed weak ferromagnetic and ferroelectric properties. In addition, ferroelectric and ferromagnetic properties of 0.75BiFeO3–0.25BaTiO3 have been controlled by Na doping, and the maximum values of magnetization and polarization were observed at 5.0 mol%.  相似文献   

14.
For preparing fine-grained 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 lead-free ferroelectric ceramics, the precursor powders were synthesized via sol-gel method and calcined at various temperatures. The precursor powders calcined at 520 °C, 550 °C, and 600 °C exhibit mean grain sizes of 30 ± 4 nm, 54 ± 3 nm, and 78 ± 5 nm, respectively. By optimizing the synthesis parameters, the fine-grained ceramics with high relative densities (>97%) and mean grain size around 100 nm were prepared. The ferroelectric, dielectric, and piezoelectric behavior were investigated. The ceramics prepared using the different precursor powders show different piezoelectric, ferroelectric, and dielectric behavior. The ceramic calcined at 550 °C and sintered at 900 °C exhibits the breakdown strength higher than 85 kV/cm, which exhibits the maximum polarization of 38.4 ± 0.3 μC/cm2, remanent polarization of 20.6 ± 0.4 μC/cm2.  相似文献   

15.
Ferroelectric Ceramics: History and Technology   总被引:33,自引:0,他引:33  
Ferroelectric ceramics were born in the early 1940s with the discovery of the phenomenon of ferroelectricity as the source of the unusually high dielectric constant in ceramic barium titanate capacitors. Since that time, they have been the heart and soul of several multibillion dollar industries, ranging from high-dielectric-constant capacitors to later developments in piezoelectric transducers, positive temperature coefficient devices, and electrooptic light valves. Materials based on two compositional systems, barium titanate and lead zirconate titanate, have dominated the field throughout their history. The more recent developments in the field of ferroelectric ceramics, such as medical ultrasonic composites, high-displacement piezoelectric actuators (Moonies, RAINBOWS), photostrictors, and thin and thick films for piezoelectric and integrated-circuit applications have served to keep the industry young amidst its growing maturity. Various ceramic formulations, their form (bulk, films), fabrication, function (properties), and future are described in relation to their ferroelectric nature and specific areas of application.  相似文献   

16.
BaTiO3-based ceramics with various grain sizes (136–529 nm) are prepared through a chemical coating method followed by sintering in a reducing atmosphere. Effects of grain size and temperature on electric properties, energy-storage properties, and dielectric tunability are studied via Current-Field (J-E) curves, ferroelectric hysteresis loops, Capacitance-Voltage (C–V) curves and Thermally stimulated depolarization currents (TSDC). At all temperatures, fine-grain ceramics yield a lower energy density but a higher energy efficiency under the same electric field, owing to a lower ferroelectric contribution. Meanwhile, fine-grain ceramics exhibit a higher maximum energy density due to their higher breakdown strength. Fine-grain ceramics with the grain size of 136 nm have the maximum energy density of 0.41 J/cm3 under the breakdown strength of 75 kV/cm, the corresponding efficiency is 81%. C–V curves show that fine-grain ceramics have better bias-field stability. According to TSDC results, fine-grain ceramics exhibit fewer oxygen vacancies and a higher relaxation activation energy.  相似文献   

17.
Fine-grained BaTiO3-based ceramics of different grain sizes (118–462 nm) with core–shell structures were prepared by a chemical coating method, having good dielectric properties and gentle temperature stability. The grain size effect on the dielectric properties and insulation resistivity of modified fine-grained BaTiO3 ceramics under high temperatures and electric fields were investigated. The DC bias shows a strong effect on the dielectric properties with decreasing grain size. In the finest ceramics, the absolute value of the capacitance stability factor was the smallest, indicating that the modified-BaTiO3 ceramic capacitor with smaller grains had higher reliability under the DC bias voltage. The highly accelerated lifetime test results showed that with decreasing the grain size, samples exhibited higher insulation resistance under elevated temperatures and high voltages. Impedance analysis proved that the finer-grained ceramic with core–shell structure had higher activation energy for both grain and grain boundary, whereas the proportion of ionic conductivity was lower.  相似文献   

18.
Modified BaTiO3 ceramics that possess high dielectric permittivity and acceptable temperature stability have been widely utilized as multilayer ceramic capacitors (MLCCs) for high-frequency bypass and power filtering in automotive applications. However, since the increasing demand for high-capacity and small-size, high-permittivity materials that can serve as dielectric layers in MLCCs are urgently required. In this work, we design and fabricate a special BaTiO3-0.03Mg-0.02Y-0.02CaZrO3 ceramic with a high dielectric permittivity of 3000 and the dielectric variation below ±13% in the temperature range of -55–150°C, fulfilling the requirements of X8R capacitors. To achieve these results, we employed grain size engineering and cation doping, using BaTiO3 precursors with a particle size of 240 nm to prepare the BaTiO3-based ceramics with fine grains, while Mg and Y co-doping was used for improving the temperature stability due to dielectric dispersion. Utilizing these high-permittivity BaTiO3-based materials, we fabricated MLCCs that satisfy the X8R criterion, possessing a high dielectric constant of 2950 and a high breakdown field (410 kV/cm).  相似文献   

19.
Di-phase ceramic composites, with general formula xNi0.7Zn0.3Fe2O4 – (1-x)BaTiO3(x = 0.9, 0.7, 0.5, 0.3, 0.1), were prepared by a mixing method. X-ray analysis, for powder and ceramics, indicated the formation of ferrite and barium titanate phases without the presence of the impurities. SEM analysis indicated that the composite morphology contained two types of grains, polygonal and rounded. Homogeneous microstructure and the smallest grain size were obtained in ceramics with 70% of barium titanate. The electrical properties of these materials were investigated using impedance spectroscopy, dielectric and ferroelectric measurements. The NZF-BT(30-70) composite has shown better electrical properties in comparison to other investigated ceramics, confirmed by dielectric and ferroelectric data analysis. Saturation magnetization and coercive field decreased with the increase of the content of ferroelectric phase.  相似文献   

20.
To improve the properties of BaTiO3 piezoelectric ceramics fabricated by 3D printing, effects of particle size were investigated on the properties of ceramic slurries and the electrical properties of BaTiO3 fabricated by Digital light processing (DLP) 3D printing method. It was found that the curing ability of the slurries decreased significantly when the particle size is close to the ultraviolet wavelength, while the viscosity kept decreasing with the increase of particle size. When the particle size in a range of submicron (d50<1 μm), the grain size of sintered ceramics decreased from 13.27 to 6.84 μm as particle size increasing. Moreover, the piezoelectric constant and relative permittivity of sintered ceramics were measured, and it turns out to reach 168.1 pC/N and 1512, respectively, while using the BaTiO3 powder with particle size of 993 nm. Finally, a cellular structural BaTiO3 ceramics was fabricated by using optimized powder and process parameters and packaged as a piezoelectric sensor, showing a good function of force-electricity conversion. These results demonstrate the feasibility of fabricating high-quality functional ceramics with designed geometry by DLP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号