首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fully dense (TiB2 + SiC) reinforced Ti3SiC2 composites with 15 vol% TiB2 and 0–15 vol% SiC were designed and synthesized by in situ reaction hot pressing. The increase in SiC content promoted densification and significantly inhibited the growth of Ti3SiC2 grains. The in situ incorporated TiB2 and SiC reinforcements showed columnar and equiaxed grains, respectively, providing a strengthening–toughening effect by the synergistic action of particulate reinforcement, grain's pulling out, “self‐reinforcement,” crack deflection, and grain refining. A maximum bending strength of 881 MPa and a fracture toughness of 9.24 MPam1/2 were obtained at 10 vol% SiC. The Vickers hardness of the composites increased monotonously from 9.6 to 12.5 GPa.  相似文献   

2.
B4C-TiB2-SiC composites toughened by (TiB2-SiC) agglomerates were prepared via reactive hot pressing with B4C and TiSi2 as raw materials. Phase composition, microstructure, and mechanical properties of the fabricated composites were investigated. The function of (TiB2-SiC) agglomerates was analyzed, and the strengthening and toughening mechanism were also discussed. Results indicated that some of the in situ formed TiB2 and SiC were interlocked to form special (TiB2-SiC) agglomerates in the matrix. The good comprehensive performances of 510 MPa flexural strength, 5.84 MPa·m1/2 fracture toughness, and 31.93 GPa hardness were obtained in the composites fabricated with 30 wt% TiSi2. The in situ introduced fine TiB2 and SiC grains refined the grains of B4C due to the pinning effect, which enhanced the strength. The special (TiB2-SiC) agglomerates and the existing toughening phenomena such as crack deflection, branching, and microcrack regions induced by the mismatch of thermal expansion coefficients, had cumulative effects on improving the fracture toughness.  相似文献   

3.
《Ceramics International》2022,48(16):23151-23158
SiC composite ceramics have good mechanical properties. In this study, the effect of temperature on the microstructure and mechanical properties of SiC–TiB2 composite ceramics by solid-phase spark plasma sintering (SPS) was investigated. SiC–TiB2 composite ceramics were prepared by SPS method with graphite powder as sintering additive and kept at 1700 °C, 1750 °C, 1800 °C and 50 MPa for 10min.The experimental results show that the proper TiB2 addition can obviously increase the mechanical properties of SiC–TiB2 composite ceramics. Higher sintering temperature results in the aggregation and growth of second-phase TiB2 grains, which decreases the mechanical properties of SiC–TiB2 composite ceramics. Good mechanical properties were obtained at 1750 °C, with a density of 97.3%, Vickers hardness of 26.68 GPa, bending strength of 380 MPa and fracture toughness of 5.16 MPa m1/2.  相似文献   

4.
Monolithic B4C, B4C–TiB2, and B4C–TiB2–graphene nanoplatelets (GNPs) were fabricated by hot pressing (HP) at 1900 °C for 1 h under an axial pressure of 30 MPa. The microstructures and mechanical and electrical properties of the B4C composites were investigated. The results show that the GNPs are distributed homogeneously in B4C-based ceramic composites. Compared with monolithic B4C, the TiB2–GNPs-containing B4C composite exhibits an approximately 68 % increase in flexural strength and a 169 % increase in fracture toughness due to the synergistic effects of TiB2 particles and GNPs. The toughening mechanisms mainly include TiB2 crack deflection, crack branching, transgranular fracture and GNPs crack deflection, crack bridging, and GNPs pull-out. Additionally, the electrical conductivity of the B4C composite reinforced with dual fillers is three orders of magnitude higher than that of monolithic B4C due to the establishment of a conductive network. The addition of GNPs can efficiently connect the isolated conductive TiB2 particles in the B4C matrix and provides an additional channel for electron migration.  相似文献   

5.
Boron carbide (B4C) ceramic composites with excellent mechanical properties were fabricated by hot-pressing using B4C, silicon carbide (SiC), titanium boride (TiB2), and magnesium aluminum silicate (MAS) as raw materials. The influences of SiC and TiB2 content on the microstructural evolution and mechanical properties of the composites were systematically investigated. The mechanism by which MAS promotes the sintering process of composites was also investigated. MAS exists in composites in the form of amorphous phase. It can effectively remove the oxide layer from the surface of ceramic particles during the high temperature sintering process. The typical values of relative density, hardness, bending strength, and fracture toughness of B4C–SiC–TiB2 composites are 99.6%, 32.61 GPa, 434 MPa, and 6.20 MPa m1/2, respectively. Based on the microstructure observations and finite element modeling, the operative toughening mechanism is mainly attributed to the crack deflection along the grain boundary, which results from the residual stress field generated by the thermal expansion mismatch between B4C and TiB2 phase.  相似文献   

6.
B4C–TiB2–SiC composites toughened by composite structural toughening phases, which are the units of (TiB2–SiC) composite, were fabricated through reactive hot pressing with B4C, TiC, and Si as raw materials. The units of (TiB2–SiC) composite with the size of 10‐20 μm are composed of interlocking TiB2 and SiC with the size of 1‐5 μm. The addition of TiC and Si can effectively promote the sintering of B4C ceramics. The relative densities of all the B4C composites with different contents of TiB2 and SiC are close to completely dense (98.9%‐99.4%), thereby resulting in superior hardness (33.1‐36.2 GPa). With the increase in the content of TiB2 and SiC, the already improved fracture toughness of the B4C composite continuously increases (5.3‐6.5 MPa·m1/2), but the flexure strength initially increases and then decreases. When cracks cross the units of the (TiB2–SiC) composite, the cracks deflect along the interior boundary of TiB2 and SiC inside the units. As the crack growth path is lengthened, the crack propagation direction is changed, thereby consuming more crack extension energy. The cumulative contributions improve the fracture toughness of the B4C composite. Therefore, the composite structural toughening units of the (TiB2–SiC) composite play an important role in reinforcing the fracture toughness of the composites.  相似文献   

7.
In this work, we systematically studied the effects of powder characteristics (B4C, TiC and Si powders) on the existential form of toughening phases (SiC and TiB2) as well as the overall microstructure and properties of B4C–TiB2–SiC composites fabricated by reactive hot pressing. The particle size of the TiC powder plays a largely determining role in the development of novel toughening phases, the TiB2–SiC composite structure, that are formed in the B4C matrix, while the Si particle size affects the agglomerate level of the SiC phase. The TiB2–SiC composite structure and SiC agglomerates enhance the fracture toughness, but decrease the flexural strength. Both the microstructure and mechanical properties of B4C–TiB2–SiC composites can be effectively tuned by regulating the combinations of the particle sizes of the starting powders. The B4C–TiB2–SiC composites demonstrate flexural strength, fracture toughness and Vickers hardness in the respective range of 567–632 MPa, 5.11–6.38 MPa m1/2, and 34.8–35.6 GPa.  相似文献   

8.
Almost fully-dense B4C–SiC–TiB2 composites with a high combination of strength and toughness were prepared through in situ reactive spark plasma sintering using B4C and TiSi2 as raw materials. The densification, microstructure, mechanical properties, reaction, and toughening mechanisms were explored. TiSi2 was confirmed as a reactive sintering additive to promote densification via transient liquid-phase sintering. Specifically, Si formed via the reaction between B4C and TiSi2 that served as a transient component contributed to densification when it melted and then reacted with C to yield more SiC. Toughening mechanisms, including crack deflection, branching and bridging, could be observed due to the residual stresses induced by the thermoelastic mismatches. Particularly, the introduced SiC–TiB2 agglomerates composed of interlocked SiC and TiB2 played a critical role in improving toughness. Accordingly, the B4C–SiC–TiB2 composite created with B4C-16 wt% TiSi2 achieved excellent mechanical performance, containing a Vickers hardness of 33.5 GPa, a flexural strength of 608.7 MPa and a fracture toughness of 6.43 MPa m1/2.  相似文献   

9.
Spark plasma sintering (SPS) is an advanced sintering technique because of its fast sintering speed and short dwelling time. In this study, TiB2, Y2O3, Al2O3, and different contents of B4C were used as the raw materials to synthesize TiB2-B4C composites ceramics at 1850°C under a uniaxial loading of 48 MPa for 10 min via SPS in vacuum. The influence of different B4C content on the microstructure and mechanical properties of TiB2-B4C composites ceramics are explored. The experimental results show that TiB2-B4C composite ceramic achieves relatively good comprehensive properties and exceptionally excellent flexural strength when the addition amount of B4C reaches 10 wt.%. Its relative density, Vickers hardness, fracture toughness, and flexural strength reach to 99.20%, 24.65 ± .66 GPa, 3.16 MPa·m1/2, 730.65 ± 74.11 MPa, respectively.  相似文献   

10.
Based on the material properties and fuzzy theory, a new design method of TiB2-based composite ceramic tool material was proposed, and the TiB2-based composite ceramic tool material with excellent friction and wear resistance was designed. Initially, the fuzzy evaluation method was used to establish the matrix of the friction and wear resistance of the material, and the TiB2-based material component with excellent friction and wear resistance was determined. Ultimately, based on the principle of fuzzy cognitive map, the correlation mapping of “sintering process–microstructure–mechanical properties” was established, and the composition ratio and sintering process were optimized. The results show that the TiB2–TaC–TiC ceramic tool material had excellent friction and wear resistance. When the volume content of TaC was 8 vol.%, the volume content of TiC was 20 vol.%, the heating rate was 100°C/min, the holding time was 8 min, the sintering temperature was 1600°C, and the sintering pressure was 50 MPa, the mechanical properties were hardness 23.5 GPa, bending strength 438 MPa, and fracture toughness 10.26 MPa∙m1/2.  相似文献   

11.
Based on thermodynamic analysis, highly dense (TiB2 + TiC)/Ti3SiC2 composite ceramics with different TiB2 volume contents were in situ fabricated in situ by hot-pressing at 1500 °C. Laminar Ti3SiC2 grains, columnar TiB2 grains and equiaxed TiC grains were clearly identified from microstructural observation; grain boundaries were clean. The increase of TiB2 volume content significantly restrains the grain growth of the Ti3SiC2 matrix. As the content of TiB2 increases from 5 vol.% to 20 vol.%, the bending strength and fracture toughness of the composites both increase and then decrease, whereas the Vickers hardness increases linearly from 6.13 GPa to 11.5 GPa. The composite with 10 vol.% TiB2 shows the optimized microstructure and optimal mechanical properties: 700 MPa for bending strength; 9.55 MPa m1/2 for fracture toughness. These are attributed to the synergistic action of strengthening and toughening mechanisms such as particulate reinforcement, crack deflection, grain's pull-out and fine-grain toughening, caused by the columnar TiB2 grains and equiaxed TiC grains.  相似文献   

12.
《Ceramics International》2023,49(3):4403-4411
B4C-20 wt% TiB2 ceramics were fabricated by hot pressing B4C and ball-milled TiB2 powder mixtures. The effects of the TiB2 particle size on the microstructure and mechanical properties were investigated. The results showed that the TiB2 particle size played an important role in the mechanical properties of the B4C–TiB2 ceramics. In addition, SiO2 introduced by ball milling was beneficial for densification but detrimental to the mechanical properties of the B4C–TiB2 ceramics. The typical values of relative density, hardness, flexural strength, and fracture toughness of the ceramics were 99.20%, 35.22 GPa, 765 MPa, and 7.69 MPa m1/2, respectively. The toughening mechanisms of the B4C–TiB2 ceramics were explained by crack deflection and crack branching. In this study, the effects of high pressure and temperature caused liquefying SiO2 to migrate to the surface of B4C–TiB2 and react with diffused carbon source in the graphite foil to form a 30 μm thick SiC layered structure, which improved the high-temperature oxidation resistance of the material. The unique SiC layered structure overcame the insufficient oxidation resistance of B4C and TiB2, thereby improving the oxidation resistance of the ceramics under high-temperature service conditions.  相似文献   

13.
《Ceramics International》2022,48(9):12006-12013
B4C-based composites were synthesized by spark plasma sintering using B4C、Ti3SiC2、Si as starting materials. The effects of sintering temperature and second phase content on mechanical performance and microstructure of composites were studied. Full dense B4C-based composites were obtained at a low sintering temperature of 1800 °C. The B4C-based composite with 10 wt% (TiB2+SiC) shows excellent mechanical properties: the Vickers hardness, fracture toughness, and flexural strength are 33 GPa, 8 MPa m1/2, 569 MPa, respectively. High hardness and flexural strength were attributed to the high relative density and grain refinement, the high fracture toughness was owing to the crack deflection and uniform distribution of the second phase.  相似文献   

14.
The aim of this work is to characterize ceramic composites SiC–TiB2. After preparation of dense composites αSiC–TiB2 (5, 10 and 15 vol% TiB2) by reactive pressureless sintering, the materials have been characterized by their microstructure and their mechanical properties. The dispersion of TiB2 particles is quite homogeneous, observed both by optical and scanning electron microscopies. Image analysis has revealed a majority of submicronic particles. Atomic force and transmission electron microscopies have shown the presence of nanometric TiB2 particles. Concerning mechanical properties, toughness increases with the TiB2 content, whereas hardness decreases when the TiB2 content increases.  相似文献   

15.
SiC whisker (SiCw)-reinforced SiC composites were prepared by an oscillatory pressure sintering (OPS) process, and the effects of SiCw content on the microstructure and mechanical and tribological properties of such composites were investigated. The addition of SiCw could promote the formation of long columnar α-SiC, and the aspect ratio of α-SiC grains first increased and then decreased with the increase of SiCw content. When the SiCw content was 5.42 wt%, the relative density of the SiC–SiCw composite reached up to 99.45%. The SiC–5.42 wt% SiCw composite possessed the highest Vickers hardness, fracture toughness, and flexural strength of 30.68 GPa, 6.66 MPa·m1/2, and 733 MPa, respectively. In addition, the SiC–5.42 wt% SiCw composite exhibited the excellent wear resistance when rubbed with GCr15 steel balls, with a friction coefficient of .76 and a wear rate of 4.12 × 10−7 mm3·N−1·m−1. This could be ascribed to the improved mechanical properties of SiC–SiCw composites, which enhanced the ability to resist peeling and micro-cutting, thereby enhancing the tribological properties of the composites.  相似文献   

16.
《Ceramics International》2020,46(11):18813-18825
This investigation intended to assess the influence of SiC morphology on the sinterability and physical-mechanical features of TiB2-SiC composites. For this aim, different volume percentages of SiC particles and SiC whiskers were introduced to TiB2 samples hot-pressed at 1950 °C for 2 h under an external pressure of 25 MPa. The characterization of as-sintered specimens was carried out using X-ray diffraction, optical microscopy, and scanning electron microscopy. The relative density studies revealed that SiCw had a more significant impact on the sinterability of TiB2-based composites. The XRD investigation confirmed the production of an in-situ TiC phase during the hot-pressing; however, some peaks related to the graphitized carbon also appeared in the patterns of SiCw-doped ceramics. The addition of 25 vol% SiCp halved the average grain size of TiB2 while introducing the same content of SiCw decreased this value by just around 20%. Finally, the highest Vickers hardness and fracture toughness were obtained for the sample reinforced with 25 vol% SiCw, standing at 29.3 GPa and 6.1 MPa m1/2, respectively.  相似文献   

17.
B4C-TiB2-SiC composites were fabricated via hot pressing using ball milled B4C, TiB2, and SiC powder mixtures as the starting materials. The impact of ball milling on the densification behaviors, mechanical properties, and microstructures of the ceramic composites were investigated. The results showed that the refinement of the powder mixtures and the removal of the oxide impurities played an important role in the improvement of densification and properties. Moreover, the formation of the liquid phases during the sintering was deemed beneficial for densification. The typical values of relative density, hardness, bending strength, and fracture toughness of the composites reached 99.20%, 32.84?GPa, 858?MPa and 8.21?MPa?m1/2, respectively. Crack deflection, crack bridging, crack branching, and microcracking were considered to be the potential toughening mechanisms in the composites. Furthermore, numerous nano-sized intergranular/intragranular phases and twin structures were observed in the B4C-TiB2-SiC composite.  相似文献   

18.
《Ceramics International》2017,43(11):8202-8207
Effects of HfC addition on the microstructures and mechanical properties of TiN-based and TiB2-based ceramic tool materials have been investigated. Their pore number decreased gradually and relative densities increased progressively when the HfC content increased from 15 wt% to 25 wt%. The achieved high relative densities to some extent derived from the high sintering pressure and the metal phases. HfC grains of about 1 µm evenly dispersed in these materials. Both TiN and TiB2 grains become smaller with increasing HfC content from 15 wt% to 25 wt%, which indicated that HfC additive can inhibit TiN grain and TiB2 grain growth, leading to the formation of a fine microstructure advantageous to improve flexural strength. Especially, TiB2-HfC ceramics exhibited the typical core-rim structure that can enhance flexural strength and fracture toughness. The toughening mechanisms of TiB2-HfC ceramics mainly included the pullout of HfC grain, crack deflection, crack bridging, transgranular fracture and the core-rim structure, while the toughening mechanisms of TiN-HfC ceramics mainly included pullout of HfC grain, fine grain, crack deflection and crack bridging. Besides, HfC hardness had an important influence on the hardness of these materials. Higher HfC content increased Vickers hardness of TiN-HfC composite, but lowered Vickers hardness of TiB2-HfC composite, being HfC hardness higher than for TiN while HfC hardness is lower than for TiB2. The decrease of fracture toughness of TiN-HfC ceramic tool materials with the increase of HfC content was attributed to the formation of a weaker interface strength.  相似文献   

19.
In this study, TiB2-30 vol% SiC composites containing 0, 5, 10, and 15 vol% short carbon fibers (Cf) were produced by spark plasma sintering (SPS). The effect of carbon fiber content on microstructure, density, and mechanical properties (micro-hardness and flexural strength) of the fabricated composites was studied. Scanning electron microscopy (SEM) results indicated that the fibers were uniformly dispersed in the TiB2–SiC matrix using wet ball milling before SPS process. Fully dense TiB2–SiC–Cf composites were achieved by SPS process at 1900°C for 10 min under 30 MPa. With the addition of fibers, the relative density of the composites did not change considerably. Mechanical tests revealed that microhardness was reduced about 19% by the incorporation of carbon fibers, whereas the flexural strength improved significantly. However, the flexural strength diminished by adding carbon fibers above to critical value (5 vol%) due to residual thermal stresses, nonhomogeneous structure and graphitization of carbon fibers. It was found that the composite with 5 vol% Cf had the highest flexural strength (482 MPa), which was enhanced by 20% compared with the TiB2–SiC composite.  相似文献   

20.
《Ceramics International》2021,47(18):25895-25900
In this study, TiB2–B4C composite ceramics were prepared using Y2O3 and Al2O3 as the sintering aids. Different contents of B4C were added to seek promoted comprehensive mechanical properties of the composites. The mixed powders were sintered at 1850 °C under a uniaxial loading of 30 MPa for 2 h via hot-pressing. Through the measurement of XRD, SEM and related mechanical properties, the influence of B4C content on the microstructure and mechanical properties of TiB2–B4C composites ceramics was discussed. The experimental results show that TiB2–B4C composite ceramics exhibit excellent mechanical properties, which can be attributed to the dense microstructure and fine grain size. In addition, TiB2–B4C composite ceramic shows a relatively high comprehensive properties when the addition amount of B4C is 20 wt%. The relative density, Vickers hardness, fracture toughness and flexural strength are measured to be 99.61%, 27.63 ± 1.73 GPa, 4.77 ± 0.06 MPa m1/2, 612.5 ± 28.78 MPa, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号