首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Uroguanylin and guanylin are intestinal peptides that activate a receptor-guanylate cyclase, which is also a receptor for Escherichia coli heat-stable enterotoxin (STa). These peptides may have a role in the body's regulation of fluid and electrolytes. METHODS: STa, bioactive guanylin, and bioactive uroguanylin were evaluated for effects in: 1) the suckling mouse intestinal fluid secretion assay; 2) an in vitro suckling mouse intestinal loop assay; 3) an intestinal receptor autoradiography assay; 4) a control or agonist-stimulated assay for cGMP response in T84 cells; and 5) an in vivo renal function assay in mice. RESULTS: In vivo, orally administered uroguanylin and STa but not guanylin, stimulated intestinal fluid secretion. All three peptides activated intestinal guanylate cyclase and had common intestinal receptors. In vitro, after pretreatment with chymotrypsin, only uroguanylin and STa retained agoinst activity. Chymostatin preserved guanylin activity. STa and uroguanylin induced diuresis, natriuresis, and kaliuresis. Guanylin was less potent than uroguanylin and STa. CONCLUSIONS: The results suggest that the endogenous intestinal peptides, uroguanylin and guanylin, regulate water and electrolyte homeostasis both through local effects on intestinal epithelia and endocrine effects on the kidney.  相似文献   

2.
Guanylin and uroguanylin are novel peptides that are first isolated from rat jejunum and opossum urine, respectively. They bind to and activate guanylyl cyclase-C (GC-C) to regulate intestinal and renal fluid and electrolyte transport through the second messenger, cyclic GMP. Heat-stable enterotoxins produced by pathogenic bacteria have close structural similarities to guanylin and uroguanylin, and they use this mimicry to act on GC-C, causing life-threatening secretory diarrhea. Guanylin primarily is restricted to the intestine, whereas uroguanylin is present in the stomach kidney, lung and pancreas in addition to intestine. Guanylin and uroguanylin in the intestine are secreted into the lumen and blood in response to sodium chloride administration. These peptides will function in salt and water transport in the intestine and kidney by luminocrine and/or endocrine actions. Guanylin peptide family links the intestine with the kidney and could play the physiological roles in the control of water and electrolyte balance.  相似文献   

3.
Guanylin (GCAP-I, guanylate cyclase activating peptide I) and uroguanylin (GCAP-II, guanylate cyclase activating peptide II) are regulatory peptides involved in the regulation of the intestinal chloride / water balance. They share significant structural homology to the E. coli enterotoxin STa, which binds to the particulate guanylyl cyclase C causing diarrhea in mammals. In this study we report the functional analysis of the guanylin / GCAP-I gene promoter region. By means of the luciferase reporter gene assay, we demonstrate a strong promoter activity in T84 cells. Especially the first 160 bp of the 5'-flanking region of the gene seem to be essential for gene induction. Our findings are the basis for further identification of important regulatory elements of the corresponding gene.  相似文献   

4.
Uroguanylin and guanylin are isolated mainly from the gastrointestinal tract and are activators of guanylyl cyclase C receptor (GC-C), which mediates the production of intracellular cyclic guanosine 3',5'-monophosphate (cyclic GMP). The bronchodilator effects of agents that raise cyclic GMP levels, such as atrial natriuretic peptide, have been reported, and uroguanylin mRNA has recently been detected in extra-gastrointestinal tissues, including the lung, suggesting their role in pulmonary activity. In the first step of this study, we examined the relaxant effects of uroguanylin and guanylin on isolated tracheal smooth muscle of guinea-pigs, and measured tissue cyclic GMP levels by means of enzymeimmunoassay. Uroguanylin produced concentration-dependent relaxant effects on resting tone and significant elevated cyclic GMP levels. Guanylin produced the same, but less potent, effects. In this study, we first investigated the effects of uroguanylin and guanylin on antigen-induced bronchoconstriction and airway microvascular leakage in actively sensitized guinea-pigs. Anesthetized male guinea-pigs, ventilated via a tracheal cannula, were placed in a plethysmograph to measure pulmonary mechanics for 10 min after challenging with 1 mg/kg of ovalbumin. Evans blue dye was then extravasated into their airway tissues to measure microvascular leakage. Intravenous pretreatment with uroguanylin significantly inhibited ovalbumin-induced bronchoconstriction and microvascular leakage in a dose-dependent manner. These inhibitory effects were mimicked by 8-bromoguanosine 3', 5'-cyclic monophosphate. This study is the first to show that uroguanylin not only had a potent bronchodilatory effect but also inhibited microvascular leakage. These results encouraged us to continue the above experimental and clinical studies in bronchial asthma.  相似文献   

5.
Intestinal cells exhibit binding sites with different affinities for Escherichia coli heat-stable enterotoxin (ST) and guanylin, suggesting the existence of different receptors for these peptides. Guanylyl cyclase C from intestinal cells has been identified as one receptor for these peptides. Equilibrium and kinetic binding characteristics of rat guanylyl cyclase C expressed in COS-7 cells were examined, employing ST, to determine if this receptor exhibited multiple affinities. Scatchard analysis of equilibrium binding yielded curvilinear isotherms consistent with the presence of high (pM) and low (nM) affinity sites. Kinetic analysis of binding demonstrated that these sites exhibited similar dissociation but different association kinetics. In addition, two distinct affinity states of low affinity sites were identified with dissociation constants of 0.15 and 5.85 nM. Association of ST and low affinity sites was biphasic, while dissociation from these sites was unimodal. Close agreement of equilibrium and kinetic dissociation constants suggested that low affinity sites were in the lowest affinity state at equilibrium. Comparison of the ligand dependence of guanylyl cyclase activity (EC50 = 110 nM) with receptor occupancy revealed that binding of ST to the lowest affinity state of low affinity sites (EC50 = 80 nM) is directly coupled to catalytic activation. These studies suggest that binding sites with different affinities for ST exhibited by intestinal cells reflect the expression of a single gene product, guanylyl cyclase C, rather than different receptors for the ligand. The shift in affinity state of low affinity sites and its correlation with catalytic activation suggest a central role for this phenomenon in mechanisms mediating receptor-effector coupling of membrane guanylyl cyclases.  相似文献   

6.
Receptors for guanylin and uroguanylin were identified on the mucosal surface of enterocytes lining the intestine of the bobtail skink (Tiliqua rugosa), king's skink (Egernia kingii), and knight anole (Anolis equestris) by receptor autoradiography using 125I-ST (Escherichia coli heat-stable enterotoxin) as the radioligand. Specific, high-affinity binding of 125I-ST to receptors was found on the microvillus border of enterocytes and little or no specific binding of 125I-ST was observed in other strata comprising the gut wall. The American alligator (Alligator mississippensis) also exhibited receptor binding, but unlike the other three species had relatively high levels of apparent nonspecific binding. A comparison of intestinal cGMP accumulation responses between the American alligator and the knight anole demonstrated a greater magnitude of cGMP responses to ST and guanylin in vitro in the knight anole relative to the tissue cGMP accumulation responses of alligators. Treatment with ST resulted in markedly greater tissue cGMP accumulation responses in both species compared to treatment with guanylin. To complete a paracrine signaling pathway in reptilian intestine, guanylin-like peptides that stimulated cGMP accumulation in human T84 intestinal cells were isolated from the intestinal mucosa of alligators. We conclude that functional receptor-guanylyl cyclases and one or more endogenous guanylin/uroguanylin-like peptides occur in the intestinal tract of reptiles as well as in the intestines of mammals and birds. Thus, higher vertebrates have a conserved signaling pathway that regulates intestinal function through the first-messenger peptides, guanylin and/or uroguanylin, and the intracellular second messenger, cGMP.  相似文献   

7.
In the rat central nervous system, cyclic GMP can be produced by two isoforms of guanylyl cyclase: a cytosolic isoform, which is activated by nitric oxide, and a membrane-bound isoform, activated by atrial natriuretic factor. We studied the development of guanylyl cyclase activity upon maturation of the rat forebrain from postnatal days 4 to 24, using a combined immunocytochemical and biochemical approach. Atrial natriuretic factor-activated particulate guanylyl cyclase activity was found to decrease in the frontal cortex, in the lateral septum and in the piriform cortex upon maturation. A transient expression of atrial natriuretic factor-sensitive guanylyl cyclase activity was observed at postnatal day 8 in the caudate putamen complex, whereas an increase was observed in the lateral olfactory tract from postnatal days 8 to 24. Biochemical and immunocytochemical studies using the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester, or the inhibitor of soluble guanylyl cyclase 1H-[1,2,4]oxadiazolo[4,3-a]quinaloxin-1-one, indicated high levels of endogenous nitric oxide release at postnatal days 4 and 8. This activity decreased strongly in all brain areas examined. From postnatal day 8 onwards, atrial natriuretic factor-responsive cyclic GMP-immunoreactive cells could be characterized as astrocytes, with the exception of those in the the lateral olfactory tract, where the myelinated fibers became cyclic GMP producing. Furthermore, our results on activation of both guanylyl cyclases at postnatal day 8 leads to the suggestion that both isoforms might be found in the same cells. This study shows that there are pronounced differences between various frontal brain areas in the development of the responsiveness of both the particulate and soluble isoforms of guanylyl cyclase, and lends further support to the hypothesis that natriuretic peptides have a role in neuronal growth and plasticity of the rat brain.  相似文献   

8.
Enterotoxigenic Escherichia coli elaborate a peptide called heat-stable enterotoxin (ST), which binds to and activates the intestinal ST receptor (STaR). STaR, also known as guanylyl cyclase C (GC-C), is a member of the transmembrane guanylyl cyclase receptor family. The mRNA for STaR encodes an approximately 120 kDa protein with the N-terminal ligand binding domain on the cell surface. Ligand affinity cross-linking studies have previously demonstrated several species of potential ST binding proteins, ranging in size from approximately 50 to 160 kDa. Although these smaller forms of STaR (50-80 kDa) have been proposed to act in vivo as toxin binding proteins, their biogenesis and localization have not previously been examined. Using pulse labeling in vivo and synchronized translation in vitro, we demonstrate that these smaller forms represent incomplete translational products and are not formed through limited proteolysis of the full-length receptor, as had previously been believed. We determined, using fluorescence confocal microscopy and surface labeling, that only approximately 25% of cellular receptors are expressed at the surface, while the remaining population is retained within the endoplasmic reticulum. Only full-length receptor is found at the surface of the cell, indicating this to be the biologically active form of STaR responsible for interacting with the heat-stable enterotoxin and other luminal intestinal peptides. The large intracellular receptor population, and potential for function before translocation to the cell surface, may impact on how pharmacologic modulators of this clinically important receptor are designed.  相似文献   

9.
10.
Nitric oxide (NO) plays a crucial role in the regulation of kidney function and metabolism. Our previous study showed that dexamethasone, one of several known selective inhibitors of inducible nitric oxide synthase (NOS), had a stimulatory effect on soluble guanylyl cyclase in the glomeruli of rat kidney. However, in the presence of dexamethasone, the atrial natriuretic factor (ANF)-dependent system remained suppressed. The aim of the present study was to investigate whether inhibition of synthesis of endogenous NO modulates the activity of the guanylyl cyclase system(s) in glomeruli. In these studies, rats were injected with a non-selective NOS inhibitor, N-omega-nitro-L-arginine methyl ester (NAME; NAME-group), or saline solution (controls; C-group). Creatinine clearance (C(Cr)), and plasma and urinary nitrate/nitrite (NOx-) levels decreased in the NAME-group, but plasma and urinary guanosine 3',5'-cyclic monophosphate (cGMP) contents were unchanged. In the presence of 0.1 microM ANF, synthesis of cGMP in the NAME-group exceeded threefold the cGMP production in the C-group. In addition, the pre-contracted glomeruli of the NAME-group were fully relaxed at 0.1 microM ANF, but glomeruli obtained from the C-group were relaxed in the presence of a 10 times higher dose of ANF. The increased sensitivity of glomeruli to ANF was possibly due to the more than doubled activity of particulate guanylyl cyclase (pGC) in the NAME-group in comparison with the C-group. In the presence of 100 microM sodium nitroprusside (SNP), soluble guanylyl cyclase (sGC) generated significantly lower cGMP production in the NAME-group than in the C-group (1.61 +/- 0.33 vs. 2.91 +/- 0.69 nmol/mg protein/10 min, respectively). These results demonstrate that inhibition of the synthesis of endogenous NO may also have an inhibitory effect on the activity of sGC. In addition, increased activity of the pGC and ANF-dependent system appears to be compensatory to the altered activity of soluble guanylyl cyclase.  相似文献   

11.
The restoration of the dark state in retinal rod cells following illumination is due in part to resynthesis of cGMP. Retinal guanylyl cyclase specifically catalyzes the cyclization of GTP into cGMP in vivo. The reaction has been shown to involve the inversion of the configuration on the phosphate atom as demonstrated by conversion of the (SP) isomer of GTP alpha S to (RP)-cGMPS by guanylyl cyclase [Senter, P. D., Eckstein, F., Mülsch, A., & B?hme, E. (1983) J. Biol. Chem. 258, 6741-6745]. Since (RP-cGMPS is not a substrate for retinal phosphodiesterase, we were able to measure cyclase activity with greater reliability using this novel assay as opposed to other published procedures. This assay has allowed us to reinvestigate the effects of adenylyl nucleotides on cyclase activity and to search for selective inhibitors of the rod-specific enzyme. We have measured the cyclase activity using homogenates of rod outer segments and a reconstituted system composed of guanylyl cyclase in washed rod outer segment membranes and the purified guanylyl cyclase activating protein. Our results indicate that 100-200 microM ATP (and other adenylyl nucleotides) stimulates guanylyl cyclase activity approximately 2-fold and that the observed stimulation of enzyme activity is independent of the free calcium concentration. In contrast to other particulate guanylyl cyclases, which are synergistically stimulated by a peptide ligand and ATP, guanylyl cyclase activating protein does not potentiate the effect of ATP, suggesting that retinal guanylyl cyclase may be regulated differently. ATP changes the Vmax of retinal guanylyl cyclase without changing the Km for (SP)-GTP alpha S.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The nitric oxide (NO) signaling system, consisting of NO synthases, soluble guanylyl cyclase, and cGMP, plays a prominent role in salt handling and regulation of blood pressure. Soluble guanylyl cyclases are heme-containing heterodimers (alpha/beta). The alpha1/beta1 isoform has greater NO sensitivity than the alpha1/beta2. It has recently been shown that expression of the beta subunits is altered in the kidney of the Dahl salt-sensitive rat, ie, the beta1 subunit is decreased and the beta2 subunit increased. However, whether soluble guanylyl cyclase is linked to salt sensitivity is not known. In the present study, we investigated linkage of guanylyl cyclase genes to blood pressure. Alpha1 and beta1 gene loci for soluble guanylyl cyclase were mapped to rat chromosome 2, and the beta2 gene locus was mapped to rat chromosome 5 using fluorescent in situ metaphase hybridization. By use of a rat radiation hybrid panel, the gene loci were then further mapped with respect to known quantitative trait locus markers of salt-sensitive hypertension in the Dahl rat on chromosomes 2 and 5. Genes for alpha1 and beta1 were closely linked by two-point analysis to Na+,K+-ATPase alpha1 isoform (LOD of 15.1 and 14.0, respectively) and calmodulin-dependent protein kinase II-delta loci (LOD of 14.3 and 12.9, respectively), which have been previously shown to flank a quantitative trait locus for blood pressure in the Dahl rat. The alpha1 and beta1 genes were closely linked (LOD of 11.3; theta, 0.4). The beta2 gene locus was closely linked to the endothelin-2 (ET-2) locus (LOD of 13.0), which has been shown to cosegregate with blood pressure. We conclude that soluble guanylyl cyclase subunit loci, ie, alpha1, beta1, and beta2, are good candidates for genes controlling salt-sensitive hypertension in the Dahl rat.  相似文献   

13.
The heat-stable enterotoxin STa of E. coli causes diarrhea by binding to and stimulating intestinal membrane-bound guanylyl cyclase, triggering production of cyclic GMP. Agents which stimulate protein kinase C (PKC), including phorbol esters, synergistically enhance STa effects on cGMP and secretion. We investigated whether PKC causes phosphorylation of the STa receptor in vivo and in vitro. Immunoprecipitation of the STa receptor-guanylyl cyclase was carried out from extracts of T84 colon cells metabolically labelled with [32P]-phosphate using polyclonal anti-STa receptor antibody. The STa receptor was phosphorylated in its basal state, and 32P content in the 150 kDa holoreceptor band increased 2-fold in cells exposed to phorbol ester for 1 h. In vitro, immunopurified STa receptor was readily phosphorylated by purified rat brain PKC. Phosphorylation was inhibited 40% by 5 microM of a synthetic peptide corresponding to the sequence around Ser1029 of the STa receptor, a site previously proposed as a potential PKC phosphorylation site. Treatment of the immunopurified STaR/GC with purified PKC increased STa-stimulated guanylyl cyclase activity 2-fold. We conclude that PKC phosphorylates and activates the STa receptor/guanylyl cyclase in vitro and in vivo; Ser1029 of the STaR/GC remains a candidate phosphorylation site by PKC.  相似文献   

14.
Uroguanylin is a small peptide isolated from opossum urine that activates membrane guanylate cyclases. We report the isolation by molecular cloning of cDNAs encoding the 109 amino acid preprouroguanylin containing the active uroguanylin peptide at its C-terminus. Preprouroguanylin mRNAs of 1.2 kb were detected throughout the small and large intestine and in the atria and ventricles of heart, but not in kidney, stomach or liver. Transfection of COS-1 cells with the uroguanylin cDNA resulted in prouroguanylin secretion. Both uroguanylin and prouroguanylin were isolated from opossum plasma. Thus, uroguanylin is made by the intestine and heart and circulates as a bioactive form of uroguanylin and the inactive prouroguanylin.  相似文献   

15.
Recently we reported that Vibrio vulnificus hemolysin, an exotoxin produced by V. vulnificus, dilates rat thoracic aorta via elevated cGMP levels without affecting nitric oxide synthase. We investigated the mechanism further by observing the guanylyl cyclase activities in cytosolic, membrane, unfractionated, or reconstituted preparations. Hemolysin did not activate guanylyl cyclase in the membrane or cytosolic fraction, while it activated guanylyl cyclase in unfractionated or reconstituted preparation. The increased activity was not inhibited by the HS-142-1, a microbial polysaccharide which antagonizes atrial natriuretic peptide receptor, or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a soluble guanylyl cyclase inhibitor. However, it was attenuated by 6-(phenylamino)-5,8-quinolinedione (LY 83.583), which inhibits the catalytic domain of both guanylyl cyclases, and by cholesterol, which blocks hemolysin-incorporation into the membrane. Removing ATP, a cofactor of particulate guanylyl cyclase, attenuated the activation and ATPgammaS, a non-phosphorylating analog, restored it. These results suggest that V. vulnificus hemolysin activates particulate guanylyl cyclase via hemolysin incorporation into the vascular smooth muscle cell membrane in cooperation with certain unidentified cytosolic component(s).  相似文献   

16.
1. Guanosine 3':5'-cyclic monophosphate (cyclic GMP) is an important second messenger mediating the effects of nitric oxide (NO) and natriuretic peptides. Cyclic GMP pathways regulate several aspects of lung pathophysiology in a number of airway cells. The regulation of this system has not been extensively studied in pulmonary epithelial tissue. 2. We have studied the production of cyclic GMP by suspensions of ovine tracheal epithelial cells in response to activators of soluble guanylyl cyclase (sodium nitroprusside (SNP) and S-nitroso-N-acetyl-penicillamine (SNAP) and particulate guanylyl cyclase (atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP) and E. coli heat stable enterotoxin (STa)). 3. Both 10(-7)-10(-3) M and 10(-7)-10(-3) M SNAP generated a concentration-dependent marked elevation in cyclic GMP production when incubated with 10(-3) M 3-isobutyl-l -methylxanthine (IBMX) (both greater than 25 x baseline values with highest drug concentration). 4. The increase in production of cyclic GMP in response to 10(-6) M SNP and 10(-5) M SNAP was markedly inhibited by both 5 x 10(-5) M haemoglobin (102% and 92% inhibition) and 5 x 10(-5) M methylene blue (82% and 84% inhibition). 5. The increase in cyclic GMP in response to 10(-3) M SNP was measured following co-incubation with the phosphodiesterase inhibitors 10(-7)-10(-3) M IBMX, 10(-7)-10(-4) M milrinone and 10(-7)-10(-4) M SKF 96231. Only 10(-4)-10(-3) M IBMX significantly increased cyclic GMP levels. 6. Cyclic GMP production was also significantly elevated from baseline by 10(-5) M ANP, 10(-5) M BNP, 10(-5) M CNP and 200 iu ml-3 of E. coli STa toxin in the presence of 10(-3) M IBMX. Increases with these natriuretic peptides and STa toxin were smaller in magnitude (2-4 fold) than those seen with SNP and SNAP. CNP was the most potent of the natriuretic peptides studied suggesting type B membrane bound guanylate cyclase is the predominant form expressed. 7. These results suggest that ovine tracheal epithelial cells contain active guanylyl cyclases. The more marked response to SNP and SNAP than to natriuretic peptides suggests that soluble guanylyl cyclase predominates.  相似文献   

17.
A cDNA clone encoding the membrane form of guanylyl cyclase was isolated from a Hemicentrotus pulcherrimus testis cDNA library and its nucleotide sequence was determined. The cDNA was 4123 bp long and an open reading frame predicted a protein of 1125 amino acids including an apparent signal peptide of 21 residues; a single transmembrane domain of 25 amino acids which divides the mature protein into an amino-terminal, extracellular domain of 485 amino acids and a carboxyl-terminal, intracellular domain of 594 amino acids. Three potential N-linked glycosylation sites were present in the extracellular domain. Northern blot analysis of poly(A)+RNA from testes, ovaries, eggs and embryos at various developmental stages showed that the cDNA encoding guanylyl cyclase hybridized to a mRNA of 4.4 kb from the testes. We developed a large scale purification method of the phosphorylated (131 kDa) and dephosphorylated (128 kDa) forms of the membrane-bound guanylyl cyclase from H. pulcherrimus spermatozoa. The purified 131 kDa and 128 kDa forms of the guanylyl cyclase contained 26.0 +/- 1.3 and 4.3 +/- 0.7 moles of phosphate per mol protein (mean +/- S.D.; n = 6), respectively. The amino-terminal amino acids of both the 131 kDa and 128 kDa forms of the guanylyl cyclase could not be detected, suggesting that they were blocked.  相似文献   

18.
The cytosolic calcium level ([Ca2+]i) and the membrane-bound guanylyl cyclase activity in the isolated rat intestinal epithelial cells were investigated. Heat-stable enterotoxin of Vibrio cholerae non-01 (NAG-ST) was found to increase both the [Ca2+]i and the enzyme activity. These changes occur similarly until 5 min of incubation with NAG-ST, indicating that these changes might be involved in NAG-ST induced signal transduction in rat enterocytes.  相似文献   

19.
Natriuretic peptides (NP) act as ligands on the guanylyl cyclase family of receptors. The NP binding site on these receptors is extracellular and the guanylyl cyclase and protein kinase domains are intracellular. The guanylyl cyclase receptor catalyzes the synthesis of the second messenger molecule, cGMP, which activates protein kinase. This in turn is involved in the phosphorylation of various ion transport proteins. Ion transport proteins, which are modulated by NP and are thought to underlie the natriuretic and diuretic actions of NP, include: (a) calcium-activated K+ channels; (b) ATP-sensitive K+ channels; (c) inwardly-rectifying K+ channels; (d) outwardly-rectifying K+ channels; (e) L-type Ca2+ channels; (f) Cl- channels including cystic fibrosis transmembrane conductance regulator Cl- channels; (g) Na+- K+ 2Cl- co-transporter; (h) Na+- K+ ATPase; (i) Na+ channels; (j) stretch-activated channels; and (k) water channels. It appears that NP modulate the kinetics, rather than the conductance, of ion channels. Some of these channels, like the Ca2+, ATP-sensitive K+ and stretch-activated channels, are also involved in NP secretion. In addition, the structural properties of the NP, e.g., ovCNP-22 and ovCNP-39, appear to confer on them the ability to form ion channels. These CNP-formed ion channels can modify the trans-membrane signal transduction and second messenger systems underlying NP-induced pathological effects.  相似文献   

20.
Adenylate cyclase is a key enzyme that couples with both the stimulatory and inhibitory G proteins (Gs and Gi). The cyclase has been purified and shown to be a glycoprotein of molecular weight 115,000-180,000. Cloning of cDNAs for adenylate cyclase showed that the cyclase is a member of a large family consisting of a variety of subtypes of the enzyme. These subtypes show different responses to calmodulin and G protein beta gamma subunits, and their distributions in tissues and organs are also different. This suggests that each subtype is involved in a particular physiological function. The general structure of adenylate cyclase is composed of two cytoplasmic domains and two membrane-spanning domains, each of which contains 6 transmembrane spans (12 spans in a molecule). The amino acid sequence of each cytoplasmic domain, which is thought to contain a nucleotide (ATP) binding site, is well-conserved among the various subtypes. This review also focuses on the regulation of adenylate cyclase activity by G protein subunits, particularly on several models for adenylate cyclase inhibition by Gi. As one of these mechanisms, direct inhibition of adenylate cyclase by the beta gamma subunits recently demonstrated by us will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号