首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
对静止空气中自由射流微喷管甲烷/空气预混合火焰的燃烧特性进行了实验研究,考察了火焰高度特征及其相关影响因素,详细探讨了尺度变化对微火焰熄火极限的影响.结果表明:微喷管射流预混合火焰为层流火焰,火焰高度与微喷管出口流速成止比,火焰高度随当量比减小而减小;同一当量比下,无量纲参数H/d(火焰高度/微喷管直径)与出口Re数呈线性关系.微尺度效应导致预混合火焰淬熄速度明显增大,同时可燃极限当量比远大于1,微预混合火焰发生淬熄的主要原凶是微尺度下热量和质量扩散作用明显增强.  相似文献   

2.
微尺度甲烷扩散火焰及其熄灭特性   总被引:4,自引:0,他引:4  
用不同直径微/小尺度圆管对甲烷在空气中的扩散燃烧进行实验研究,分析了微/小尺度火焰的结构,考察了影响火焰高度的相关因素,详细探讨了火焰的熄灭极限特点,并拟合了淬熄速度与喷管出口直径d之间的经验关系式.结果表明,火焰的高度与喷管出口速度呈线性关系,随d减小而减小;H/d(火焰高度/喷口直径)与出口处Re值成正比,与d无关;随尺度d的减少,下限(淬熄速度)增大,火焰的稳燃区间变小,稳定燃烧条件苛刻.  相似文献   

3.
燃气轮机燃烧室进气速度变化是引起燃烧不稳定的主要因素之一,本文以某重型燃气轮机单管燃烧室为研究对象,建立了不同燃烧室进气速度条件下的单管燃烧室三维数值模型,研究了预混燃烧模式下燃烧火焰面随燃烧室进气速度的变化规律。燃料和氧化剂分别为甲烷和空气,燃空当量比为0.481。基于燃气轮机实际运行流量变化试验数据,燃烧室进气速度分别取103.9 m/s、94.8 m/s、85.7 m/s、76.5 m/s、67.2 m/s。研究结果表明燃烧室进气速度越大,燃烧火焰面越长,且燃烧火焰面所包裹的体积与燃烧室进气速度基本呈正比线性关系;在进气速度为103.9 m/s时,燃烧火焰面所包裹的体积较速度为67.2 m/s增加了23.8%。  相似文献   

4.
以均匀空气流中圆管形成的甲烷扩散火焰为对象,用数值解析的方法研究了微尺度扩散火焰的火焰结构和燃烧特性.燃烧反应采用甲烷/空气一步总括反应,喷管壁面绝热.在Re一定的情况下,改变喷口尺寸和喷口流速,考察了微扩散火焰的结构和火焰熄灭的尺度效应.计算结果表明,Re=12条件下,喷口直径为0.07mm时达到熄灭极限;稳定燃烧区的最小总放热率约为0.5W;微尺度条件下,Da对火焰结构和火焰熄灭有显著影响,熄火附近的Da的数量级在0.01.  相似文献   

5.
在可视化微尺度燃烧实验台上进行甲烷和氧气的燃烧试验,利用高速数码照相机捕捉到了火焰面在微通道内的传播过程,测试分析了不同进气流量下反复熄燃火焰的可燃极限、火焰传播速度和火焰间隔时间,获得了反复熄燃火焰(Flames with repetitive extinction and ignition, FREI)的燃烧特性。结果表明,随着甲烷进气流速的增加,可以形成FREI火焰的氧气进气流速范围也在扩大;在甲烷进气流速一定的情况下,随着氧气进气流速的增加,火焰的传播速度也逐渐增加,并且火焰重复点燃的间隔时间呈现先变大后逐渐变小的规律,即火焰重复点燃的频率先变慢后又逐渐变快直至火焰熄灭。  相似文献   

6.
为了优化微阵列火焰燃烧加热系统,在相同的燃料负荷和喷管物理条件下,构建了甲烷预混和微火焰阵列燃烧模型,并研究了不同喷管中心间距对温度场和燃尽率特性的影响规律。研究结果表明,由若干微小喷管火焰优化组成的阵列可形成温度均匀的加热场;随着喷管中心间距减小,火焰间相互影响程度增加,均温加热场的温度提高;喷管中心间距继续减小,微喷管阵列火焰开始聚并、向大火焰转变,燃烧反应区间变长、均温场处的燃尽率下降,微喷管火焰丧失微火焰特性;因此确定微火焰阵列加热场喷管中心间距这一重要参数时,需综合考虑温度均匀性、热负荷、燃尽率和污染物等因素。  相似文献   

7.
以大空间中圆形陶瓷微管形成的液体乙醇扩散火焰为研究对象.用实验和数值解析的方法研究了微尺度液体乙醇扩散火焰的火焰结构和温度分布.实验证明,在喷管尺寸相同条件下液体乙醇流量增大,火焰温度随之升高,火焰体积增大.通过数值解析观察了火焰和微管内温度场分布以及微管内热质传递现象.数值解析结果与实验一致.  相似文献   

8.
以焦炉气为燃料,纯氧气为氧化剂,采用双通道烧嘴在不同的射流速度下于敞开空间中进行垂直自由扩散燃烧,考察了Fr数、Re数对火焰长度的影响,以及焦炉气射流速度与火焰脱火高度的关系.实验表明,火焰由浮力控制区向动量控制区转变时的Fr数约为197,由层流区向湍流区转变时的Re数约为16000;火焰发生脱火的临界速度约为20 m/s.  相似文献   

9.
富氧空气/甲烷扩散燃烧的NO抑制机理的数值研究   总被引:3,自引:0,他引:3  
为了开发适用于富氧燃烧的NO抑制技术,以对向流扩散火焰这一扩散燃烧的典型形态为对象,利用所建立的基元反应动力学模型研究了燃料稀释(CO2为稀释剂)以及速度梯度的改变对富氧空气/甲烷扩散火焰中NO生成的影响.用CO2稀释燃料甲烷得到的计算结果表明,随着燃料中CO2浓度的增大,火焰结构和NO生成的机理发生了显著变化,NO排放指数EINO(Emission index of NO)单调减少.改变速度梯度发现,随着速度梯度的增加,热力型NO质量生成速率以及EINO快速下降.这些研究表明,用CO2稀释燃料以及增加速度梯度可以减少富氧火焰中NO的生成.  相似文献   

10.
为了研究甲烷质量分数变化对扩散过滤燃烧特性的影响,通过实验对稀释甲烷/氧气在填充床中扩散过滤燃烧的火焰特性以及污染物CO的质量浓度进行研究。结果表明:当甲烷质量分数从0.138增加到0.288,小球填充高度从40 mm增加到200 mm时,同时存在浸没燃烧和表面燃烧;随着甲烷质量分数的增加,表面火焰的高度升高,CO的质量浓度降低,最低时约为12 mg/m~3;随着填充床高度的增加,表面火焰的高度降低,CO的质量浓度增加,最大时约为420 mg/m~3。  相似文献   

11.
The stability characteristics of attached hydrogen (H2) and syngas (H2/CO) turbulent jet flames with coaxial air were studied experimentally. The flame stability was investigated by varying the fuel and air stream velocities. Effects of the coaxial nozzle diameter, fuel nozzle lip thickness and syngas fuel composition are addressed in detail. The detachment stability limit of the syngas single jet flame was found to decrease with increasing amount of carbon monoxide in the fuel. For jet flames with coaxial air, the critical coaxial air velocity leading to flame detachment first increases with increasing fuel jet velocity and subsequently decreases. This non-monotonic trend appears for all syngas composition herein investigated (50/50 → 100/0% H2/CO). OH chemiluminescence imaging was performed to qualitatively identify the mechanisms responsible for the flame detachment. For all fuel compositions, local extinction close to the burner rim is observed at lower fuel velocities (ascending stability limit), while local flame extinction downstream of the burner rim is observed at higher fuel velocities (descending stability limit). Extrema of the non-monotonic trends appear to be identical when the nozzle fuel velocity is normalized by the critical fuel velocity obtained for the single jet cases.  相似文献   

12.
《Combustion and Flame》2006,144(1-2):225-236
The thermochemical states of three swirling CH4/air diffusion flames, stabilized in a gas turbine model combustor, were investigated using laser Raman scattering. The flames were operated at different thermal powers and air/fuel ratios and exhibited different flame behavior with respect to flame instabilities. They had previously been characterized with respect to their flame structures, velocity fields, and mean values of temperature, major species concentrations, and mixture fraction. The single-pulse multispecies measurements presented in this article revealed very rapid mixing of fuel and air, accompanied by strong effects of turbulence–chemistry interactions in the form of local flame extinction and ignition delay. Flame stabilization is accomplished mainly by hot and relatively fuel-rich combustion products, which are transported back to the flame root within an inner recirculation zone. The flames are not attached to the fuel nozzle, and are stabilized approximately 10 mm above the fuel nozzle, where fuel and air are partially premixed before ignition. The mixing and reaction progress in this area are discussed in detail. The flames are short (<50 mm), especially that exhibiting thermoacoustic oscillations, and reach a thermochemical state close to adiabatic equilibrium at the flame tip. The main goals of this article are to outline results that yield deeper insight into the combustion of gas turbine flames and to establish an experimental database for the validation of numerical models.  相似文献   

13.
In this work, buoyancy effects on hydrogen jet flames confined in a small tube without air co-flow were numerically investigated. The results show that the extinction limit of fuel velocity under buoyant condition is much lower than that without buoyancy. Moreover, hydrogen flames under buoyant condition attatch the nozzle exit for all fuel velocities investigated; however, the flames without buoyancy surround the lower wall at low fuel velocity. In addition, combustion is nearly complete in the presence of buoyancy, whereas the combustion efficiency under non-buoyant condition is below 45%. Furthermore, flame temperature under buoyant condition is much higher compared to the counterpart under non-buoyant condition at low and moderate fuel velocities. Analysis reveals that in the case without buoyancy, the negative gauge pressure in the annular space is unable to entrain sufficient air from the ambient. Hence, hydrogen has to diffuse downwards to sustain the flame and complete combustion is unrealizable.  相似文献   

14.
Numerical simulations are performed to study the flame propagation of laminar stratified syngas/air flames with the San Diego mechanism. Effects of fuel stratification, CO/H2 mole ratio and temperature stratification on flame propagation are investigated through comparing the distribution of flame temperature, heat release rate and radical concentration of stratified flame with corresponding homogeneous flame. For stratified flames with fuel rich-to-lean and temperature high-to-low, the flame speeds are faster than homogeneous flames due to more light H radical in stratified flames burned gas. The flame speed is higher for case with larger stratification gradient. Contrary to positive gradient cases, the flame speeds of stratified flames with fuel lean-to-rich as well as with temperature low-to-high are slower than homogeneous flames. The flame propagation accelerates with increasing hydrogen mole ratio due to higher H radical concentration, which indicates that chemical effect is more significant than thermal effect. Additionally, flame displacement speed does not match laminar flame speed due to the fluid continuity. Laminar flame speed is the superposition of flame displacement speed and flow velocity.  相似文献   

15.
The effects of a proposed combustion technique, named as annular counterflow, on the enhancement of jet diffusion flame blowout limits were investigated by a series of experiments conducted for the present study. Annular counterflow was formed in a concentric annulus, in which fuel jet was ejected from a nozzle and air was sucked into an outer cylinder encompassing the nozzle. Three fuel nozzles and outer cylinders of different sizes were utilized to perform the experiments. Schlieren technique and normal video filming were employed for the visualization of diverse flame morphologies triggered by the said flow. Gas samplings were taken and scrutinized by the use of a gas chromatograph. Results showed that the blowout limits can be enhanced dramatically by an increase in volume flow rates of air‐suction. Mixing enhancement is achieved with frequent and strong outward ejection of fluids from the cold jet when this technique is applied. The blowout limits are further extended when the diameter of outer cylinders becomes smaller and/or that of the fuel nozzle becomes larger. The base widths of lifted flames were found to be narrower in the interim of annular counterflow application. The rates of increase in flame lift‐off heights and base widths along with an increase in fuel flow velocities become sluggish when the volume flow rates of air are increased. The amount of fuel that was sucked into the outer cylinder was found to be negligible and trivial. A model based on annular and coaxial jet was developed to predict the lifted flame base width and blowout limits. The coincidence between the prediction and experimental results unambiguously validates that the momentum of air‐suction dominates the beneficial effect. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
This experimental study concerns determination of blowoff equivalence ratios for lean premixed conical flames for different mixture approach velocities ranging from 5 to 16 m/s in the presence of spatial mixture gradients and upstream velocity modulation. Conical flames were anchored on a disk-shaped bluff body that was attached to a central rod in the burner nozzle. A combustible propane-air mixture flowed through a converging axisymmetric nozzle with a concentric insert, allowing radial mixture variation by tailoring the composition in the inner and outer parts of the nozzle. The radial mixture profiles were characterized near the location of the flame holder by laser Rayleigh light scattering. Additionally, a loudspeaker at the nozzle base allowed introduction of periodic velocity oscillations with an amplitude of 9% of the mean flow velocity up to a frequency of 350 Hz. The flame blowoff equivalence ratio was experimentally determined by continuously lowering the fuel flow rates and determining the flame detachment point from the flame holder. Flame detachment was detected by a rapid reduction of CH* emission from the flame base imaged by a photomultiplier detector. It was found that the flame blowoff is preceded by progressive narrowing of the flame cone for the case of higher inner jet equivalence ratios. In this case, the fuel-lean outer flow cannot sustain combustion, and clearly this is not a good way of operating a combustor. Nevertheless, the overall blowoff equivalence ratio is reduced by inner stream fuel enrichment. A possible explanation for this behavior is given based on the radial extent of the variable-equivalence-ratio mixture burning near the flame stabilization region. Fuel enrichment in the outer flow was found to have no effect on blowoff as compared to the case of uniform mixture. The results were similar for the whole range of mean flow velocities and upstream excitation frequencies.  相似文献   

17.
In a number of previous numerical studies, the fuel inlet velocity boundary conditions (BC) of coflow diffusion flames were specified at the exit of the fuel nozzle with a parabolic velocity profile. Such choices were based on the assumption that the flow inside the vertical fuel tube is fully developed and the buoyancy has negligible impact on the fuel flow at the nozzle exit. These assumptions, however, might not hold in practical experiments. This study demonstrates it is necessary to account for the effect of inlet BC location to accurately predict the nozzle exit velocity profile as well as the velocity, temperature profiles downstream, which are prerequisites for meaningful polycyclic aromatic hydrocarbon (PAH) and soot prediction in coflow diffusion flames. In particular, laboratory-scale laminar coflow diffusion flames at atmospheric pressure have been studied computationally with a focus on the effects of the fuel inlet velocity profile on PAH formation. Two sets of simulations were conducted which differ in the location specified for the fuel inlet boundary. In the first case, the fuel inlet boundary was specified at the nozzle exit while in the second case it was specified at a distance of 7 cm upstream of the nozzle exit. Parabolic velocity profiles were specified for both cases. In each set of simulations, flames with three different fuels (methane, ethylene and propane) were tested. Detailed high-temperature reaction mechanisms accounting for the formation of aromatic species were employed. The results showed that the fuel inlet BC location notably influence the predicted flow/temperature field and the resultant PAH concentration. Moreover, the effects become more notable with lower fuel stream velocities. It was also found that for propane with a density larger than air, recirculation zones were formed near the nozzle exit which exerted an additional influence on the flow development and temperature field as well as PAH formation. In addition, the effects of nozzle heating on flow development and PAH formation were also investigated.  相似文献   

18.
《Combustion and Flame》2004,136(1-2):51-71
A statistical (Monte Carlo) method for radiative heat transfer has been incorporated in CFD modeling of buoyant turbulent diffusion flames in stagnant air and in a cross-wind. The model and the computational tool have been developed and applied to simulate both burner flames with controlled fuel supply rate and in self-sustained pool fires with burning rates coupled with flame radiation. The gas–soot mixture was treated either as gray (using the effective absorption coefficient derived from total emissivity data or the Planck mean absorption coefficient) or as non-gray (using the weighed sum of gray gases model). The comparison of predicted radiative heat fluxes indicates applicability of the gray media assumption in modeling of thermal radiation in case of high soot content. The effect of turbulence-radiation interaction is approximately taken into account in calculation of radiation emission, which is corrected to allow for temperature self-correlation and absorption-temperature correlation. In modeling buoyant propane flames in still air above 0.3 m diameter burner, extensive comparison is presented of the predictions with the measurements of gas species concentrations, temperature, velocity and their turbulent fluctuations, and radiative heat fluxes obtained in flames with different heat release rates. Similar to previously published experimental data, the predicted burning rate of flames above the acetone pools exposed to flame radiation increases with the pool diameter and approaches a constant level for large pool sizes. The magnitude of predicted burning rates is shown to be in agreement with the reported measurements. Augmentation of burning rate of the pool fire in a cross-wind because of increased net radiative heat flux received by the fuel surface and non-monotonic dependence of burning rate on cross-wind velocity, subject to the pool diameter, is predicted. The statistical treatment of thermal radiation transfer has been found to be robust and computationally efficient.  相似文献   

19.
The excess enthalpy flames and their dynamics below the flammability limit are studied by considering two flames that propagate in opposite directions in parallel channels. The model enables the coupling between the external heat loss, convection preheating, diffusion transport and finite rate chemistry. Analytical expressions for the flame temperature, separation distance, and extinction limit are obtained. The results show that flame extinction can be caused by the external heat loss without heat conduction of inner wall in the streamwise direction. The heat recirculation across the separating wall dramatically increases the flame speed and extends the flammability limit. It is shown that the maximum and minimum flame speeds corresponding respectively to the fast and slow flame modes exist at all separation distances between the two flames. It is found that the flame can adjust its separation distance to adapt to the variation of heat loss, heat recirculation and fuel concentration. There exists a maximum flame separation distance beyond which sub-limit flame does not exist. The results also showed that heat recirculation significantly extends the flammability limit. Furthermore, at low fuel concentrations, the flame can be stabilized in a narrow range of separation distance. The present study not only generalized the previous analyses of the heat recirculation flames but also provided a model for the study and control of sub-limit flames in micro power devices and reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号