首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
翘曲变形是注塑件的主要缺陷,利用电器后盖对薄壁成型工艺进行研究。采用Moldflow软件对塑件成型过程进行数值模拟,研究了保压压力、塑件材料对注塑件翘曲变形的影响。对薄壁注塑件的数值仿真模拟结果进行统计分析,并且对影响注塑翘曲变形量的工艺参数进行综合分析,得到最优的工艺参数组合。研究结果表明:最佳的工艺参数组合可以使得塑件翘曲量变得最小。  相似文献   

2.
In this study, an adaptive optimization method based on artificial neural network model is proposed to optimize the injection molding process. The optimization process aims at minimizing the warpage of the injection molding parts in which process parameters are design variables. Moldflow Plastic Insight software is used to analyze the warpage of the injection molding parts. The mold temperature, melt temperature, injection time, packing pressure, packing time, and cooling time are regarded as process parameters. A combination of artificial neural network and design of experiment (DOE) method is used to build an approximate function relationship between warpage and the process parameters, replacing the expensive simulation analysis in the optimization iterations. The adaptive process is implemented by expected improvement which is an infilling sampling criterion. Although the DOE size is small, this criterion can balance local and global search and tend to the global optimal solution. As examples, a cellular phone cover and a scanner are investigated. The results show that the proposed adaptive optimization method can effectively reduce the warpage of the injection molding parts.  相似文献   

3.
During the production of thin shell plastic parts by injection molding, warpage depending on the process conditions is often encountered. In this study, efficient minimization of warpage on thin shell plastic parts by integrating finite element (FE) analysis, statistical design of experiment method, response surface methodology (RSM), and genetic algorithm (GA) is investigated. A bus ceiling lamp base is considered as a thin shell plastic part example. To achieve the minimum warpage, optimum process condition parameters are determined. Mold temperature, melt temperature, packing pressure, packing time, and cooling time are considered as process condition parameters. FE analyses are conducted for a combination of process parameters organized using statistical three-level full factorial experimental design. The most important process parameters influencing warpage are determined using FE analysis results based on analysis of variance (ANOVA) method. A predictive response surface model for warpage data is created using RSM. The response surface (RS) model is interfaced with an effective GA to find the optimum process parameter values.  相似文献   

4.
注射成型受众多因素影响,在制件结构和模具结构确定的条件下,通过合理的注射工艺参数,可消除或减少塑件成型中出现的缺陷。针对某企业在试生产一种储物箱箱盖时产生翘曲变形的问题,采用Taguchi试验方法,应用Moldflow对注射过程进行模拟,获得了塑件在熔料温度、模具温度、注射时间和保压压力四因素三水平下成型的翘曲变形量。采用极差分析,比较了不同工艺参数对翘曲变形量的影响程度,得到了优化的工艺参数组合。经试验验证,其效果良好,产品的翘曲变形得到了一定的改善。  相似文献   

5.
文中在薄壁注射成型中将CAE技术和DOE(design ofexperiment)相结合,以薄壁盖板塑件为例,利用Moldflow对各工艺参数进行注射成型模拟分析。通过分析塑件翘曲变形的原因,得出保压压力对翘曲变形起主导性作用。并在正交试验的指导下优化工艺参数,有效降低塑件的翘曲变形。  相似文献   

6.
A stepwise optimization approach based on Gaussian process (GP) surrogate model is proposed to determine the process parameters and improve the quality control for injection molding. In order to improve the global performance in this optimization, an enhanced probability of improvement criterion is also introduced. Firstly, GP surrogate model is constructed with the initial samples which are obtained from an optimal design of experiment method. GP is capable of giving both a prediction and an estimate of the confidence for the prediction simultaneously. Secondly, an enhanced probability of improvement criterion is used to find the direction of adding training samples and optimize the surrogate model. Since the global optimal region of the model become accurate efficiently after steps of optimizing the surrogate model, the proposed enhanced probability of improvement criterion can switch more swiftly to global optima compared with other improvement criterion. Finally, an auto front grille molding process is taken as an example to illustrate the method. The results show that the proposed optimization method can effectively decrease the warpage of injection-molded parts.  相似文献   

7.
响应面法与遗传算法相结合的注塑工艺优化   总被引:1,自引:0,他引:1  
应用田口方法进行试验设计,应用计算机辅助工程技术对注塑成形过程进行了分析,建立了注塑成形工艺参数与翘曲度关系的代理模型——响应面模型,对模型进行了验证研究,将响应面法与遗传算法相结合进行了注塑工艺参数优化。结果表明,响应面模型是准确可靠的,将响应面法和遗传算法相结合,可有效提高运算速度和优化效率。  相似文献   

8.
以熔融温度、模具温度、射出时间、保压压力、保压时间等5个制程参数作为控制因子。利用Moldflow来模拟塑料薄壳挡板不同的成型制程参数下的翘曲与收缩值。基于仿真所得翘曲及收缩值数据,使用田口方法结合倒传递神经网络5-14-14-2建立预测模型。再利用测试样本来验证的倒传递神经网络模型的准确性。运用所建立的倒传递神经网络模型预测其他成型制程参数的翘曲及收缩值。结果证明,田口法结合倒传递神经网络,不仅可以有效的优化倒传递神经网络,而能成功的预测翘曲及收缩值,与Moldflow仿真值相比平均误差都在±1%内。  相似文献   

9.

The main objective of the present article is to solve the problems of poor molding quality, large warpage, inadequate cooling effect and unsuitable selection of process parameters, in the injection molding process for passenger vehicle front-end plastic wing plate. The thickness and parting surface of the vehicle front-end fender were determined, the injection mold and its cooling system were designed. The relevant process parameters, affecting the product molding quality, were tested, according to orthogonal experimental approach, while their influence on the warpage was obtained, by analyzing the data. Finally, the BP neural network of warpage model was established and globally optimized using genetic algorithm. The optimal parameter combination of the injection molding process was derived as: melt temperature 236 °C, mold temperature 51 °C, cooling time 32 s, packing pressure 97 MPa and packing time 16 s.

  相似文献   

10.

Plastic composites are used in vehicle components to improve fuel efficiency. Thus, the warpage of injection-molded plastic parts has become a quality issue. Factors, such as product shape and thickness, resin, and other injection molding conditions, can be modified to improve the warpage problem. However, if these factors are set with no possible adjustments, reverse engineering may be required. Reverse engineering is a difficult process that requires many trials and errors; thus, it is only used as a last resort. With respect to the warpage issue, reverse engineering considers the following: (1) Predicting and (2) modeling the warpage in opposite directions. Autodesk Moldflow Insight accommodates these key considerations, but many researchers are reluctant to use it. Although existing injectionmolding analysis programs are mainly used to predict qualitative results, computer-aided engineering (CAE) for reverse engineering requires quantitative analysis. Hence, the considerations are different from the existing analyses. An error in warpage prediction may lead to a costly mold modification because of the molds' complex structures. Quantitative warpage prediction for reverse engineering depends on process variables; thus, understanding how warpages are affected by uncertain process variables is important to improve the reliability of reverse engineering. Moreover, even if appropriate process variables are set, they cannot be applied due to tolerance in lengths. For this reason, mold shrinkage must be identified before designing a mold. This study conducted injection molding analysis for a radiator tank that uses glass fiber-reinforced plastic using Autodesk Moldflow Insight 2018.2. Data for warpage prediction were generated in accordance with five process variables to identify the relationship between the level of warpage and process variables. CAE also showed the level of mold shrinkage that can reduce warpage. In addition, a predictive model was created using the multilayer perceptron (MLP)- supervised learning technique, which is a deep learning method for artificial neural networks. The predictive model was compared with typical regression models, such as polynomial regression (also known as response surface model), EDT and RBF, to determine the optimal approximation model. The real modeling time for a radiator tank product is 1 h, but the MLP approximation model required only 1 min and 8 s to perform 8530 iterations with a similar reliability.

  相似文献   

11.
以某车型下进气格栅为研究对象,以保压压力、熔体温度和注射时间为注塑工艺参数,确定综合翘曲变形值为实验测量指标。用直观分析法、方差分析法分析注塑工艺参数对翘曲变形影响,判断各因素之间的交互作用对指标的显著影响,获得优化的注塑工艺参数组。通过Moldflow软件对下进气格栅进行变形分析,检验工艺参数是否合理。此研究为进气格栅设计与制造研究提供理论依据,具有重要的实际意义。  相似文献   

12.
基于神经网络和遗传算法的薄壳件注塑成型工艺参数优化   总被引:1,自引:0,他引:1  
建立基于神经网络和遗传算法并结合正交试验的薄壳件注塑成型工艺参数优化系统.正交试验法用来设计神经网络的训练样本,人工神经网络有效创建翘曲预测模型;遗传算法完成对影响薄壳塑件翘曲变形的工艺参数(模具温度、注射温度、注射压力、保压时间、保压压力和冷却时间等)的优化,并计算出其优化值.按该参数进行试验,效果良好,可以有效地减小薄壳塑件翘曲变形,其试验数值与计算数值基本相符,说明所提出的方法是可行的.  相似文献   

13.
Warpage reduction is one of the important issues in plastic injection molding (PIM). In order to resolve this issue, there are mainly two ways to reduce warpage: One is to design the mold, and the other is to optimize the process parameters such as the mold temperature, the melt temperature, and so on. In this paper, the latter approach is employed. In particular, variable pressure profile approach is adopted for the warpage reduction. Besides the variable pressure profile, the melt temperature and the mold temperature are taken as the design variables. Also, short shot that the melt plastic is not filled into the cavity is one of the fatal defects in PIM. Unlike the literature, in this paper, the short shot is handled as the design constraint. PIM simulation is generally so costly and time consuming, and then the surrogate-based optimization technique is used. The radial basis function (RBF) network is used throughout sequential approximate optimization (SAO) procedure. Moldex3D is used for PIM simulation. In order to compare the effectiveness of the variable pressure profile, the traditional process parameter optimization considered in the literature is also carried out. Numerical results show that the variable pressure profile is one of the effective ways to warpage reduction compared to the traditional process parameter optimization.  相似文献   

14.
In this paper, an effective optimization method using the Kriging model is proposed to minimize the warpage in injection molding. The warpage deformations are nonlinear, implicit functions of the process conditions, which are typically evaluated by the solution of finite element (FE) equations, a complicated task which often involves huge computational effort. The Kriging model can build an approximate function relationship between warpage and the process conditions, replacing the expensive FE reanalysis of warpage in the optimization. In addition, a “space-filing” sampling strategy for the Kriging model, named rectangular grid, is modified. Moldflow Corporation’s Plastics Insight software is used to analyze the warpage deformations of the injection-molded parts. As an example, the warpage of a cellular phone cover is investigated, where the mold temperature, melt temperature, injection time, and packing pressure are regarded as the design variables. The result shows that the proposed optimization method can effectively decrease the warpage deformations of the cellular phone cover and that the injection time has the most important influence on warpage in the chosen range.  相似文献   

15.

Numerical simulation of the injection molding process of the outer panel of the automotive plastic rear door and mold design is presented here. Computer aided three-dimensional interactive application (CATIA) is employed to design the original automotive steel structure, and the modal and thermodynamic properties of the plastic back door outer panel are changed by changing the different injection materials of the back door outer panel. In order to efficiently design the panels, finite element analysis is used to verify whether the designed parts meet the mechanical properties requirements such as light weight, low fuel consumption, short production cycle, strong modeling design, high corrosion resistance and good recovery, the above main parameters have been evaluated, and the above main parameters are carried out evaluate. To simulate the injection molding process, computer aided engineering (CAE) software such as ANSYS and HyperWorks are used to analyze the back door of the selected material. After the numerical analysis, suitable material is selected, so that the modal and thermodynamic properties of the product could be satisfied as well as improved. Unigraphics NX (UG) is employed to design the convex and concave mold for the injection molding of the automobile’s plastic back door panel. Combined with the characteristics of the parts and the design requirements of the injection mold, the multi-scheme design of the pouring and cooling system is carried out. By comparing the effects of different gating and cooling systems on injection molding, the best gating and cooling system is selected. The artificial fish swarm algorithm is used to optimize the process parameters of the injection molding process, and the best combination of the injection molding process parameters of the outer panel of the rear door of the automobile is obtained.

  相似文献   

16.
In this paper, the parameters optimization of plastic injection molding (PIM) process was obtained in systematic optimization methodologies by two stages. In the first stage, the parameters, such as melt temperature, injection velocity, packing pressure, packing time, and cooling time, were selected by simulation method in widely range. The simulation experiment was performed under Taguchi method, and the quality characteristics (product length and warpage) of PIM process were obtained by the computer aided engineering (CAE) method. Then, the Taguchi method was utilized for the simulation experiments and data analysis, followed by the S/N ratio method and ANOVA, which were used to identify the most significant process parameters for the initial optimal combinations. Therefore, the range of these parameters can be narrowed for the second stage by this analysis. The Taguchi orthogonal array table was also arranged in the second stage. And, the Taguchi method was utilized for the experiments and data analysis. The experimental data formed the basis for the RSM analysis via the multi regression models and combined with NSGS-II to determine the optimal process parameter combinations in compliance with multi-objective product quality characteristics and energy efficiency. The confirmation results show that the proposed model not only enhances the stability in the injection molding process, including the quality in product length deviation, but also reduces the product weight and energy consuming in the PIM process. It is an emerging trend that the multi-objective optimization of product length deviation and warpage, product weight, and energy efficiency should be emphasized for green manufacturing.  相似文献   

17.
在塑料产品的开发过程中,涉及到塑料模具进行注塑,注塑模具开发方案确定后,最重要的就是如何选择注塑参数。注塑参数可以在注塑机上直接进行试生产来调试,但必须是模具制造出来之后才能进行,对场地和设备均有要求,而且在试模过程中会浪费一定的塑料原材料。本文采用正交试验法对注塑参数进行优化,利用Moldflow软件的模具CAE技术对正交试验过程各种取值情况进行验证,并对最终优化组合进行验证,检验正交试验的正确性。确定翘曲变形量为实验指标,以注射温度、模具温度、充填时间、冷却时间、保压时间为变量的5因素,取各自允许取值范围进行4均分得到4水平,形成一个5因素4水平的正交试验矩阵设计实验,找出KDC-1型电磁断路器塑料壳体充填优化组合,通过在Moldflow的验证,及时反映了该正交试验结果是正确的注塑参数最优组合。  相似文献   

18.
This paper presents a systematic methodology to analyze the shrinkage and warpage in an injection-molded part with a thin shell feature during the injection molding process. The systematic experimental design based on the response surface methodology (RSM) is applied to identify the effects of machining parameters on the performance of shrinkage and warpage. The experiment plan adopts the centered central composite design (CCD). The quadratic model of RSM associated sequential approximation optimization (SAO) method is used to find the optimum value of machining parameters. One real case study in the injection molding process of polycarbonate/acrylonitrile butadiene styrene (PC/ABS) cell phone shell has been performed to verify the proposed optimum procedure. The mold temperature (M T), packing time (P t), packing pressure (P P) and cooling time (C t) in the packing stage are considered as machining parameters. The results of analysis of variance (ANOVA) and conducting confirmation experiments demonstrate that the quadratic models of the shrinkage and warpage are fairly well fitted with the experimental values. The individual influences of all machining parameters on the shrinkage and warpage have been analyzed and predicted by the obtained mathematical models. For the manufacture of PC/ABS cell phone shell, the values of shrinkage and warpage present the reduction of 37.8 and 53.9%, respectively, using this optimal procedure.  相似文献   

19.
对参数优化方法在注塑研究中的应用进行综述,阐述了各方法的基本原理和主要特点,着重讨论优化方法所适用的优化问题的类型和其对注塑翘曲、收缩、熔接缝及强度的预测能力以及模拟软件的应用,探讨了不同优化方法相结合对搜索效率和优化结果的影响。强调了基于知识的参数优化方法在注塑研究中的重要性。  相似文献   

20.
The objective of this paper is to examine the influence of injection molding parameters on the core shift to obtain the optimal injection molding conditions of a plastic battery case with thin and deep walls using numerical analyses and experiments. Unlike conventional injection molding analysis, the flexible parts of the mold were represented by 3-D tetrahedron meshes to consider the core shift in the numerical analysis. The design of experiments (DOE) was used to estimate the proper molding conditions that minimize the core shift and a dominant parameter. The results of the DOE showed that the dominant parameter is the injection pressure, and the core shift decreases when the injection pressure decreases. In addition, it was shown that the initial mold temperature and the injection time hardly affect the core shift. The results of the experiments showed that products without warpage are manufactured when the injection pressure is nearly 32 MPa. Comparing the results of the analyses with those of the experiments, optimal injection molding conditions were determined. In addition, it was shown that the core shift should be considered to simulate the injection molding process of a plastic battery case with thin and deep walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号