首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
以生物质主要组分纤维素为原料,在热重-红外光谱联用仪上对纤维素分别以5,10,20,40℃/min的升温速率进行了热解实验研究,考察了纤维素的热解特性及轻质气体析出规律。结果表明:较高的升温速率能促进热解反应的进行,升温速率可作为影响最大热解失重速率对应温度(Tp)的一个重要因素,Tp会随着升温速率的增大而升高;纤维素热解过程中,热解气体的最大析出峰都对应于给定升温速率下的DTG失重峰;4种主要轻质气体(H2O,CO,CO2和CH4)均表现为双峰特性,且CO气体在热解后期的析出规律与CO2,H2O和CH4气体的析出规律不同;不同官能团键的断裂和重整,致使小分子气体组分和析出量的差异很大,热解过程中,羰基(C=O)和醚键(C-O-C)的断裂对CO2的生成影响显著;在低温区间CO的析出主要源于C-O-C的断裂,而在高温区间二芳基醚的分解则是CO产生的主要原因;CH4气体的析出主要由甲氧基(CH3O-)的伸缩振动引起。  相似文献   

2.
采用热重分析仪与傅里叶红外光谱仪对城市污水污泥进行实验,考察了反应过程及逸出气体产物,求解了热解表观动力学参数。研究表明,污泥样品在N2、CO2和N2+O2气氛中分别发生的热解、气化和燃烧反应,反应过程的特征参数不同;在N2中主要热解温度范围为200~560℃,反应过程在600℃基本完成;随着升温速率增加,热解最大失重速率提高;污泥样品在N2中的热解过程依次析出H2O、CO2、CH4和CO等气体;污泥样品热解不同反应阶段具有不同反应机理和动力学参数,表观活化能在60~100 kJ/mol范围内。  相似文献   

3.
周强  王秀文  沈德魁 《太阳能学报》2016,37(9):2236-2242
运用Klason法从4种不同生物质中制备木质素,采用元素及红外分析对不同木质素的化学结构进行表征,运用TG-FTIR研究不同来源木质素慢速热解特性的影响,发现不同来源的木质素热解过程表现为两个主要失重阶段,对应芳香族类化合物的析出与小分子气体的析出过程;其中枫木木质素的热解活性较高,可在较低的温度点(378℃)达到失重最大速率,这与其含有丰富的甲氧基结构有关。在实验分析的基础上建立分阶段反应动力学模型,计算其在不同热解阶段的动力学参数,发现第一阶段活化能主要在19.95~33.66 k J/mol之间,热解第二阶段的活化能在34.82~48.99 k J/mol之间。  相似文献   

4.
城市污泥耦合锯末共热解特性及动力学分析   总被引:1,自引:0,他引:1  
为实现城市污水污泥与锯末共热解的工业应用,利用热重分析仪对污泥耦合锯末共热解过程进行了实验与理论研究,揭示了锯末添加比例、升温速率对污泥热解特性的影响,并基于Coats-Redfern法,结合20种常见固体热解机理函数确定了污泥耦合锯末共热解过程最优热解动力学模型。结果表明:锯末相比污泥具有更低的表观活化能,最大失重速率是污泥的4倍;锯末的添加使得热重分析(TG)曲线向下偏移,最大失重速率明显增大,挥发份析出特性变强;随着升温速率的增大,固态残渣增加,最大失重速率减小,不利于热解反应的进行;按7∶3比例混合的污泥锯末耦合热解微分热重分析(DTG)曲线峰前(230~350℃)表观活化能为38.81 k J/mol,最优动力学模型为D_5-3D扩散模型;峰后(350~500℃)表观活化能为29.93 k J/mol,最优动力学模型为C~2-化学反应模型。  相似文献   

5.
利用热重分析仪,研究不同比例混合的生物质三组分(纤维素、半纤维素和木质素)的热解过程,并将计算热失重曲线与实验热失重曲线进行对比研究,探讨热解过程中三组分之间的相互作用。结果表明:纤维素对半纤维素的热解无明显作用,而足量的纤维素能减少木质素的固体残渣产率;半纤维素能增大纤维素的主要热解温度区间,使纤维素的失重峰向高温侧移动和降低纤维素的失重速率,但对木质素无明显作用;木质素能降低纤维素的失重速率,且较多的木质素能增大半纤维素的失重速率。生物质混合样品的动力学分析结果进一步验证了三组分之间的相互作用。  相似文献   

6.
通过TG-FTIR与动力学方法,研究碱性木质素与油页岩混合共热解的协同作用。实验结果表明:通过二者加权平均理论值与实验实际值对比,发现在热失重过程中仅在高温热解区间有协同作用。热解动力学研究表明:碱性木质素与油页岩可用组合一级反应动力学来描述,混合质量比为8∶2时反应活化能E在高温热解区间最高,为抑制作用;其他混合比的反应活化能E在高温热解区间最低,为促进作用。通过红外光谱的检测,对共热解过程有明显变化的官能团进行分析,共热解过程析出的CH_4、CO、CO_2、H_2O浓度在高温热解区间均有不同程度的增大,混合比为8∶2时,浓度均为最低。  相似文献   

7.
基于热红联用分析的木质素热裂解动力学研究   总被引:20,自引:0,他引:20  
利用热重红外联用系统对生物质的主要组分木质素进行了热裂解动力学研究.在用红外固体压片法研究木质素结构的基础上得到不同升温速率下木质素热裂解的热重曲线.实验结果表明,随着升温速率的增加,各个阶段的起始和终止温度向高温侧轻微移动,主反应区间增加;计算得到的木质素两阶段活化能分别为58.41 kJ/mol和119.98 kJ/mol.与纤维素热解气的联机红外分析谱图相比可知木质素热解过程中气体析出机理复杂,主要生成CO、CH4和呋喃等产物.  相似文献   

8.
谷壳热解/气化的热重-红外联用分析   总被引:2,自引:0,他引:2  
利用热重分析(TGA)和傅里叶红外光谱(FTIR)联用技术对典型生物质热解和气化特性及其气体产物的释放规律进行了研究,并确定了其热解和气化机理.研究表明,谷壳在N2和GO2气氛下的热解失重主要集中在220~600℃,并且具有相似的热解特性;在800℃以后谷壳在N2和CO2气氛下反应所对应的热重曲线出现了较大的差异.气体产物主要在240~600℃析出,主要成分为H2O、CO、CH4、CxHy(x>1)和一些有机碳水化合物,其中H2O的析出温度较低,而CH4和CO析出温度相对较高;由于谷壳气化过程中存在CH4和CO2重整反应,使得H2O析出呈现双峰形式,并且CH4,含量相对于热解时偏小,CH4的析出特性曲线仅有一个峰,CO的析出特性曲线是双峰形式,且CO的释放曲线和谷壳反应速率曲线有着相似的特征温度和变化趋势.谷壳的热解服从两步反应机理,低温段的热解机理函数为f(α)=(1-α)2/3,高温段的热解机理函数为f(α)=(1-α)2.5;而气化机理函数为f(α)=(1α)2/3.  相似文献   

9.
采用热重分析法对3种生物质样品进行燃烧特性试验,并利用质谱仪在线监测了燃烧排放的部分气体成分.对生物质样品进行燃烧反应动力学分析,得到相关的表观活化能及指前因子.研究结果表明:燃烧过程可以分为3个温度阶段:①吸附水的析出及铵盐的热分解(室温~150℃);②半纤维素、纤维素及部分木质素的热解(150~350℃);③木质素的热解及焦炭的燃烧(350~600℃).利用质谱仪在线监测了CH4,NH3,H2O,CO2,NOx等气体产物,其质谱曲线与对应的热重曲线相符合,也验证了各反应阶段的假设.  相似文献   

10.
通过热重红外分析仪(TG-FTIR)研究垃圾衍生燃料(refuse derived fuel,RDF)在升温速率为10,℃/min、20,℃/min、30,℃/min、40,℃/min、50,℃/min及RDF与褐煤在质量比为0∶10、3∶7、5∶5、7∶3、10∶0时轻质气体的析出特性,利用Coats-Redfern法,求得热解动力学参数.研究发现,不同升温速率及不同质量配比时RDF热解过程主要分为3个阶段:生物质组分热解(173~433,℃)、塑料类物质热解(402~566,℃)及无机碳酸盐热解(大于650,℃).热解过程轻质气体CO_2、CH_4、CO析出均表现为双峰特性;CO_2的释放集中在低温段(200~300,℃)和高温段(600~800,℃),CO的释放集中在低温段(300~400,℃)和高温段(600~800,℃),CH4的释放集中在中温段(300~600,℃).随着升温速率的增加,轻质气体CO_2、CH_4及CO析出峰值浓度增加.RDF与褐煤共热解过程存在协同作用.  相似文献   

11.
在Aspen Plus平台上构建生物质移动床热解多联产系统模型,通过对秸秆热解过程的模拟,研究了生物炭、生物油和生物燃气三态热解产物特性,以及热解温度对系统燃料投入、水耗和电耗的影响。结果表明,随热解温度升高,生物炭热值逐渐增大。生物油和生物燃气的产率分别在450℃和650℃附近达到最大值。当热解温度为450℃时,生物油重质组分主要由糖衍生类和脂肪酸类物质构成,而轻质组分主要包括醛类、醇类和水;当热解温度为650℃时,生物燃气则主要由CO2和CO构成。生产过程中,系统的燃料消耗和电耗均随着热解温度的升高而增大,冷却水消耗量则经历先减少后增加的过程,并在450℃附近达到最小值。  相似文献   

12.
实验研究了广东省典型农业生物质稻杆、甘蔗渣/叶的燃烧结渣特性。采用GB/T212-2001和ASTM E1755标准进行灰化实验,采用角锥法和一步法检测生物质的熔融特性。实验结果证实ASTM的低温灰化标准更适合稻杆类高无机盐含量的生物质原料。稻杆中碱金属氧化物含量达20%以上,是导致灰渣粘结和熔融的主要因素。由于角锥法灰熔点检测法提前将部分碱金属和Cl元素转化和析出,导致检测结果远高于实际燃烧的熔融温度;相比而言,一步法更具有直观性和指导作用。通过一步法实验获得稻杆临界结渣温度为700℃ ~ 750℃,甘蔗渣为850℃ ~ 900℃,甘蔗叶为900℃ ~ 950℃。CaO和Al2O3添加剂对于生物质燃烧过程具有一定的抗结渣功能,CaO通过与SiO2 (s) 反应生成高熔点的固态Ca3Si2O7 (s) 和MgOCa3O3Si2O4 (s),因此能消耗物料周围的SiO2 (s),抑制低温共融;Al2O3则通过生成高熔点温度的固态KAlSiO4和固态KAlSi2O6,减少低温共熔现象的发生。  相似文献   

13.
开发一系列用于酚醛树脂快速热解的Ga改性ZSM-5催化剂,并进行全面的催化剂表征,包括X射线衍射(XRD)、氮气吸附脱附、氨气程序升温吸附(NH3-TPD)和透射电子显微镜(TEM)等,以阐明催化剂的结构特性。Ga物种显著调节了ZSM-5分子筛酸性位点的分布和孔结构,有利于高温下促进热解脱氧反应的进行,同时优化了择形催化性能。重点讨论了Ga负载量、热解温度、催化剂与酚醛树脂质量比和升温速率等参数对热解油组成分布的影响规律。与母体H-ZSM-5催化剂相比,0.5Ga/ZSM-5在酚醛树脂快速热解中催化生产单环芳烃的效率更高,且更能有效抑制酚类化合物的生成。当热解温度为800℃、升温速率为10℃/ms时,单环芳烃的相对含量达到64.1%。  相似文献   

14.
利用自主开发的急速加热和快速质谱气固相反应分析仪进行了CO2钙基吸附剂N2气氛中300℃/s、500℃/s、600℃/s、800℃/s高加热速率下释放机理的研究,实验发现CaCO3的热分解速率随着加热速率的提高而提高。根据最可几动力学模型函数判定方法,求得动力学三因子为:E = 129.38 kJ/mol,n = 6/5,A = 806 129 s-1,反应动力学模型函数为:f(α)=5/2(1-α)[-ln(1-α)]3/5。结果表明,急速加热器中CaCO3分解反应速率比在热重分析仪(thermo gravimetric analyzer, TGA)中快,活化能小于同条件下TGA测得的活化能,且动力学机理符合随机成核及长大模型,与TGA等慢速加热实验中测得的收缩核模型存在较大差异。  相似文献   

15.
对三种生物质成型燃料在不同气氛下和不同升温速率下进行热重实验,研究反应条件对生物质成型燃料失重特性的影响规律,并对其空气气氛下的动力学特性进行了分析。研究结果表明,生物质在空气气氛下的挥发分析出速率比N2气氛下高,随着温度升高,N2气氛下主要是纤维素、半纤维素以及木质素的分解,而空气气氛下还伴随有其分解产物的燃烧。生物质中挥发分含量较高时,反应活性也比较高。实验温度由室温升至800℃时,在升温速率为10℃/min ~ 25℃/min范围内,随着升温速率的升高,松木热重曲线先向低温区移动再向温度较高的一侧移动,最大失重速率对应的温度也表现出相同规律,当升温速率为20℃/min时最大失重速率对应的温度最低,升温速率为25℃/min时失重峰值最大。动力学特性分析表明,采用2组分动力学模型可以较好地表征生物质在空气中的失重特性,计算结果与实验结果吻合度较高。  相似文献   

16.
为实现环氧树脂的清洁处置与资源化利用,在一系列金属镓改性的ZSM-5催化体系中进行快速热解实验,并进行了包括氮气吸附-脱附测试、X射线衍射(XRD)、氨气程序升温吸附(NH3-TPD)、热重分析(TGA)和透射电镜(TEM)在内的全面的催化剂表征,以阐明催化剂的结构特性。镓的改性显著调节了ZSM-5分子筛的布朗斯特/路易斯酸分布和孔隙结构,改善了高温下分子筛的热解脱氧性能,提高了催化剂的择形催化能力。选取镓负载量、热解温度、催化剂用量、热解升温速率和催化剂回用次数为实验变量,探究了热解油组成分布的变化规律。结果表明,与未改性的分子筛相比,镓改性的ZSM-5分子筛显著提高了环氧树脂快速热解过程中芳烃的选择性。通过不同热解条件的研究发现,环氧树脂催化热解制备芳烃的最佳条件为:1Ga-ZSM-5分子筛∶环氧树脂 = 1∶1,热解温度为600℃,热解速率为10℃/ms,此时芳烃总选择性最高可达56.4%,其中更有价值的单环芳烃的相对含量达到31.6%。  相似文献   

17.
为研究并开发高性能的吸附剂,本文以CaCl2和杉木木屑为原料,采用炭化活化造孔的方法制备复合吸附剂,考察了炭化活化温度对复合吸附剂性能的影响,炭化活化温度分别选择400℃、500℃、600℃和700℃。扫描电镜照片和元素分布图表明,复合吸附剂具有发达的孔隙结构而且CaCl2分布均匀。NH3吸附性能实验表明,吸附剂4 h的NH3吸附量随炭化活化温度的升高而增加。而对于吸附制冷而言,500℃炭化活化温度下制备的复合吸附剂具有最好的性能,其30 min的吸附量达到0.488 g/g。  相似文献   

18.
研究了燃气热泵(GHP)系统在过渡季节制备生活热水的性能特性,分析了发动机余热回收对GHP系统性能的影响。在不同环境温度(15~24℃)和进水温度(37.7~47.8℃)下,考察回收与不回收发动机余热模式对生活热水制热量■、耗气功率(Pgas)及一次能源利用率(rPER)的影响规律。结果表明,随着环境温度的升高,Pgas减小,而■和rPE R呈现递增的趋势;随着进水温度的升高,Pgas增大,而■和rPER呈现递减的趋势。其中环境温度20~24℃与进水温度37.7~47.8℃为Qh的不敏感区间,在环境温度为24℃和进水温度为37.7℃条件下,rPER高达2.004。GHP系统的余热回收量分别占总制热量和发动机总余热的25.00%~30.16%和62.17%~71.56%,系统的余热利用率高。  相似文献   

19.

This article deals with slow pyrolysis of oak wood and agricultural residues such as hazelnut shell and wheat straw at high temperature (950–1250 K) in a cylindrical reactor. The aim of this work is to study the effect of the treatment conditions such as temperature, particle size, and lignin and inorganic matter contents on bio-char yield and reactivity. When the pyrolysis temperature increased, the bio-char yield decreased. A high temperature and smaller particles increase the heating rate resulting in a decreased bio-char yield. The higher lignin content in hazelnut shell results in a higher bio-char yield in comparison with oak wood and wheat straw. Bio-chars from hazelnut shell and wheat straw are more reactive in gasification than bio-chars from oak wood because of the higher ash content. The bio-char obtained are carbon rich, with high heating value and relatively pollution-free potential solid biofuel.  相似文献   

20.
为提高闭式单井系统取热性能,提出一种CO2单井增强地热系统(CO2-SEGS)。建立井筒流动换热和储层热-流-固耦合的数学模型,考虑CO2可压缩性以及井纵向压力传递特性,对比分析了水和CO2在SEGS中的取热性能,研究系统取热性能与封隔间距、井筒保温的关系。结果表明:(1)额定循环流量下,井口生产温度从134.09℃降低至116.06℃;CO2在采出过程中降压膨胀做功,产生明显的温降效应,中心管井口温度比底部低约57℃。(2)井筒不同位置处CO2的密度、热容差异很大,当循环流量小于50 kg/s时,依靠浮升力作用,SEGS可实现自主循环运行,无需额外泵功。(3)当水和CO2的流量分别为15 kg/s和40 kg/s时,两者年均取热速率近似相等,CO2的采出温度比水低约40℃,而压力损耗远小于水。(4)SEGS取热性能与封隔间距以及中心管保温性能呈正相关。研究结果可为SEGS系统的开发提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号