共查询到19条相似文献,搜索用时 62 毫秒
1.
受限于现实场景中有限的通信资源,现有的多智能体算法在实际应用时面临诸多挑战,如带宽受限,通信噪声等,为了提升多智能体系统在通信受限环境中的协同性能,提出了一种创新的多智能体协同算法。该算法在设计过程中,针对通信对象、通信内容和通信时间三个方面分别进行优化,旨在降低带宽消耗,提升系统协同性能。首先,该算法引入了一种可扩展多维信息编码融合模块,该模块具备卓越的信息提取与融合能力。通过编码多维度信息,该模块能够有效提取智能体感知等信息,以及智能体之间的通信信息,并在融合过程中实现信息的互补,从而提升协同决策的准确性和效率。其次,该算法包含了一种门控通信决策模块,该模块具备自适应的信息通信和决策能力,能够根据通信信息价值决定是否进行通信。实验结果表明,与对比算法相比,提出的算法在协同导航和协同巡检等场景下均展现出了更出色的协同性能。此外,该算法还显著减少了智能体间通信信息量,进一步提高了在复杂环境中的适应性。 相似文献
2.
多智能体系统在自动驾驶、智能物流、医疗协同等多个领域中广泛应用,然而由于技术进步和系统需求的增加,这些系统面临着规模庞大、复杂度高等挑战,常出现训练效率低和适应能力差等问题。为了解决这些问题,将基于梯度的元学习方法扩展到多智能体深度强化学习中,提出一种名为多智能体一阶元近端策略优化(MAMPPO)方法,用于学习多智能体系统的初始模型参数,从而为提高多智能体深度强化学习的性能提供新的视角。该方法充分利用多智能体强化学习过程中的经验数据,通过反复适应找到在梯度下降方向上最敏感的参数并学习初始参数,使模型训练从最佳起点开始,有效提高了联合策略的决策效率,显著加快了策略变化的速度,面对新情况的适应速度显著加快。在星际争霸II上的实验结果表明,MAMPPO方法显著提高了训练速度和适应能力,为后续提高多智能强化学习的训练效率和适应能力提供了一种新的解决方法。 相似文献
3.
史殿习;胡浩萌;宋林娜;杨焕焕;欧阳倩滢;谭杰夫;陈莹 《计算机科学》2024,51(4):280-290
共同知识是多智能体系统内众所周知的知识集。如何充分利用共同知识进行策略学习,是多智能体独立学习系统中的一个挑战性问题。针对这一问题,围绕共同知识提取和独立学习网络设计,提出了一种基于观测重构的多智能体强化学习方法IPPO-CKOR。首先,对智能体的观测信息进行共同知识特征的计算与融合,得到融合共同知识特征的观测信息;其次,采用基于共同知识的智能体选择算法,选择关系密切的智能体,并使用重构特征生成机制构建它们的特征信息,其与融合共同知识特征的观测信息组成重构观测信息,用于智能体策略的学习与执行;最后,设计了一个基于观测重构的独立学习网络,使用多头自注意力机制对重构观测信息进行处理,使用一维卷积和GRU层处理观测信息序列,使得智能体能够从观测信息序列中提取出更有效的特征,有效缓解了环境非平稳与部分可观测问题带来的影响。实验结果表明,相较于现有典型的采用独立学习的多智能体强化学习方法,所提方法在性能上有显著提升。 相似文献
5.
6.
针对当前多智能体强化学习算法难以适应智能体规模动态变化的问题,文中提出序列多智能体强化学习算法(SMARL).将智能体的控制网络划分为动作网络和目标网络,以深度确定性策略梯度和序列到序列分别作为分割后的基础网络结构,分离算法结构与规模的相关性.同时,对算法输入输出进行特殊处理,分离算法策略与规模的相关性.SMARL中的... 相似文献
7.
在现实世界的复杂多智能体环境中,任务的完成通常需要多个智能体之间的相互协作,这促使各种多智能体强化学习方法不断涌现.动作价值函数估计偏差是单智能体强化学习领域中备受关注的一个重要问题,而在多智能体环境中却鲜有研究.针对这一问题,分别从理论和实验上证明了多智能体深度确定性策略梯度方法存在价值函数被高估.提出基于双评论家的多智能体深度确定性策略梯度(multiagent deep deterministic policy gradient method based on double critics,MADDPG-DC)方法,通过在双评论家网络上的最小值操作来避免价值被高估,进一步促进智能体学得最优的策略.此外,延迟行动者网络更新,保证行动者网络策略更新的效率和稳定性,提高策略学习和更新的质量.在多智能体粒子环境和交通信号控制环境上的实验结果证明了所提方法的可行性和优越性. 相似文献
8.
9.
针对多智能体系统(multi-agent systems,MAS)中环境具有不稳定性、智能体决策相互影响所导致的策略学习困难的问题,提出了一种名为观测空间关系提取(observation relation extraction,ORE)的方法,该方法使用一个完全图来建模MAS中智能体观测空间不同部分之间的关系,并使用注意力机制来计算智能体观测空间不同部分之间关系的重要程度。通过将该方法应用在基于值分解的多智能体强化学习算法上,提出了基于观测空间关系提取的多智能体强化学习算法。在星际争霸微观场景(StarCraft multi-agent challenge,SMAC)上的实验结果表明,与原始算法相比,带有ORE结构的值分解多智能体算法在收敛速度和最终性能方面都有更好的性能。 相似文献
10.
11.
针对多智能体深度确定性策略梯度算法(MADDPG)学习训练效率低、收敛速度慢的问题,研究MADDPG算法经验优先抽取机制,提出PES-MADDPG算法.首先,分析MADDPG算法的模型和训练方法;然后,改进多智能体经验缓存池,以策略评估函数误差和经验抽取训练频率为依据,设计优先级评估函数,以优先级作为抽取概率获取学习样本训练神经网络;最后,在合作导航和竞争对抗2类环境中进行6组对比实验,实验结果表明,经验优先抽取机制可提高MADDPG算法的训练速度,学习后的智能体具有更好的表现,同时对深度确定性策略梯度算法(DDPG)控制的多智能体训练具有一定的适用性. 相似文献
12.
多智能体深度强化学习是机器学习领域的一个新兴的研究热点和应用方向,涵盖众多算法、规则、框架,并广泛应用于自动驾驶、能源分配、编队控制、航迹规划、路由规划、社会难题等现实领域,具有极高的研究价值和意义。对多智能体深度强化学习的基本理论、发展历程进行简要的概念介绍;按照无关联型、通信规则型、互相合作型和建模学习型4种分类方式阐述了现有的经典算法;对多智能体深度强化学习算法的实际应用进行了综述,并简单罗列了多智能体深度强化学习的现有测试平台;总结了多智能体深度强化学习在理论、算法和应用方面面临的挑战和未来的发展方向。 相似文献
13.
AbstractMulti-agent systems need to communicate to coordinate a shared task. We show that a recurrent neural network (RNN) can learn a communication protocol for coordination, even if the actions to coordinate are performed steps after the communication phase. We show that a separation of tasks with different temporal scale is necessary for successful learning. We contribute a hierarchical deep reinforcement learning model for multi-agent systems that separates the communication and coordination task from the action picking through a hierarchical policy. We further on show, that a separation of concerns in communication is beneficial but not necessary. As a testbed, we propose the Dungeon Lever Game and we extend the Differentiable Inter-Agent Learning (DIAL) framework. We present and compare results from different model variations on the Dungeon Lever Game. 相似文献
14.
针对多智能体强化学习中因智能体之间的复杂关系所导致的学习效率低及收敛速度慢的问题, 提出基于两级注意力机制的方法MADDPG-Attention, 在MADDPG算法的Critic网络中增加了软硬两级注意力机制, 通过注意力机制学习智能体之间的可借鉴经验, 提升智能体之间的相互学习效率. 由于单层的软注意力机制会给完全不相关的智能体也赋予学习权重, 因此采用硬注意力判断两个智能体之间学习的必要性, 裁减无关信息的智能体, 再用软注意力判断两个智能体间学习的重要性, 按重要性分布来分配学习权重, 据此向有可用经验的智能体学习. 在多智能体粒子的合作导航环境上进行测试, 实验结果表明, MADDPG-Attention算法对复杂关系的理解更为清晰, 在3种环境的导航成功率都达到了90%以上, 有效提高了学习效率, 加快了收敛速度. 相似文献
15.
随着人工智能研究的进一步加深,以及在俄乌战场上相关技术的大放异彩,其在军事领域扮演的角色越来越重要。针对于日益复杂的战场环境,当前的导弹突防领域存在着信息维度高、指挥反应缓慢、突防机动战术不够灵活等问题。提出了一种基于多智能体深度确定性策略梯度(MADDPG)的训练方法,用以快速制定导弹攻击机动方案,协助军事指挥官进行战场决策。同时改进算法的经验回放策略,添加经验池筛选机制缩短训练的时长,达到现实场景中的快速反应需求。通过设置多目标快速拦截策略,仿真验证了所设计的方法能够突防的机动策略优势,通过协作智能地对目标进行突防打击,并通过比较,验证了本方法相较其他算法可以提升8%的收敛速度以及10%的成功率。 相似文献
16.
针对多智能体系统中联合动作空间随智能体数量的增加而产生的指数爆炸的问题,采用"中心训练-分散执行"的框架来避免联合动作空间的维数灾难并降低算法的优化代价.针对在众多的多智能体强化学习场景下,环境仅给出所有智能体的联合行为所对应的全局奖励这一问题,提出一种新的全局信用分配机制——奖励高速路网络(RHWNet).通过在原有... 相似文献
17.
针对协作多智能体强化学习中的全局信用分配机制很难捕捉智能体之间的复杂协作关系及无法有效地处理非马尔可夫奖励信号的问题,提出了一种增强的协作多智能体强化学习中的全局信用分配机制。首先,设计了一种新的基于奖励高速路连接的全局信用分配结构,使得智能体在决策时能够考虑其所分得的局部奖励信号与团队的全局奖励信号;其次,通过融合多步奖励信号提出了一种能够适应非马尔可夫奖励的值函数估计方法。在星际争霸微操作实验平台上的多个复杂场景下的实验结果表明:所提方法不仅能够取得先进的性能,同时还能大大提高样本的利用率。 相似文献
18.
在地震、台风、洪水、泥石流等造成严重破坏的灾区,无人机(unmanned aerial vehicle, UAV)可以作为空中边缘服务器为地面移动终端提供服务,由于单无人机有限的计算和存储能力,难以实时满足复杂的计算密集型任务.本文首先研究了一个多无人机辅助移动边缘计算模型,并构建了数学模型;然后建立部分可观察马尔可夫决策过程,提出了基于复合优先经验回放采样方法的MADDPG算法(composite priority multi-agent deep deterministic policy gradient, CoP-MADDPG)对无人机的时延能耗以及飞行轨迹进行联合优化;最后,仿真实验结果表明,本文所提出算法的总奖励收敛速度和收敛值均优于其他基准算法,且可为90%左右的地面移动终端提供服务,证明了本文算法的有效性与实用性. 相似文献
19.
船舶避碰是智能航行中首要解决的问题,多船会遇局面下,只有相互协作,共同规划避碰策略,才能有效降低碰撞风险.为使船舶智能避碰策略具有协同性、安全性和实用性,提出一种基于多智能体深度强化学习的船舶协同避碰决策方法.首先,研究船舶会遇局面辨识方法,设计满足《国际海上避碰规则》的多船避碰策略.其次,研究多船舶智能体合作方式,构建多船舶智能体协同避碰决策模型:利用注意力推理方法提取有助于避碰决策的关键数据;设计记忆驱动的经验学习方法,有效积累交互经验;引入噪音网络和多头注意力机制,增强船舶智能体决策探索能力.最后,分别在实验地图与真实海图上,对多船会遇场景进行仿真实验.结果表明,在协同性和安全性方面,相较于多个对比方法,所提出的避碰策略均能获得具有竞争力的结果,且满足实用性要求,从而为提高船舶智能航行水平和保障航行安全提供一种新的解决方案. 相似文献