共查询到12条相似文献,搜索用时 156 毫秒
1.
哈希方法由于低存储、高效率的特性而被广泛应用于遥感图像检索领域。面向遥感图像检索任务的无监督哈希方法存在伪标签不可靠、图像对的训练权重相同以及图像检索精度较低等问题,为此,提出一种基于深度多相似性哈希(DMSH)的遥感图像检索方法。针对优化伪标签和训练关注度分别构建自适应伪标签模块(APLM)和成对结构信息模块(PSIM)。APLM采用K最近邻和核相似度来评估图像间的相似关系,实现伪标签的初始生成和在线校正。PSIM将图像对的多尺度结构相似度映射为训练关注度,为其分配不同的训练权重从而优化深度哈希学习。DMSH通过Swin Transformer骨干网络提取图像的高维特征,将基于语义相似矩阵的伪标签作为监督信息以训练深度网络,同时网络在两个基于不同相似度设计的模块上实现交替优化,充分挖掘图像间的多种相似信息进而生成具有高辨识力的哈希编码,实现遥感图像的高精度检索。实验结果表明,DMSH在EuroSAT和PatternNet数据集上的平均精度均值较对比方法分别提高0.8%~3.0%和9.8%~12.5%,其可以在遥感图像检索任务中取得更高的准确率。 相似文献
2.
现实生活中的图像大多具有多种标签属性。对于多标签图像,理想情况下检索到的图像应该按照与查询图像相似程度降序排列,即与查询图像共享的标签数量依次递减。然而,大多数哈希算法主要针对单标签图像检索而设计的,而且现有用于多标签图像检索的深度监督哈希算法忽略了哈希码的排序性能且没有充分地利用标签类别信息。针对此问题,提出了一种具有性能感知排序的深度监督哈希方法(deep supervised hashing with performance-aware ranking,PRDH),它能够有效地感知和优化模型的性能,改善多标签图像检索的效果。在哈希学习部分,设计了一种排序优化损失函数,以改善哈希码的排序性能;同时,还加入了一种空间划分损失函数,将具有不同数量的共享标签的图像划分到相应的汉明空间中;为了充分地利用标签信息,还鲜明地提出将预测标签用于检索阶段的汉明距离计算,并设计了一种用于多标签分类的损失函数,以实现对汉明距离排序的监督与优化。在三个多标签基准数据集上进行的大量检索实验结果表明,PRDH的各项评估指标均优于现有先进的深度哈希方法。 相似文献
3.
针对采用松弛-量化策略的深度哈希方法面临的二值码离散优化的难题,提出一种端到端的基于成对标签的哈希方法来学习更具有判别力的哈希码,通过优化损失函数来解决离散优化丢失信息的问题.引入锚点哈希码概念,以汉明空间中的锚点作为监督信息训练AlexNet网络,将表示图片的二值码拟合至各锚点附近,使用优化后的损失函数计算分类误差和... 相似文献
4.
深度卷积神经网络学习的图像特征表示具有明显的层次结构.随着层数加深,学习的特征逐渐抽象,类的判别性也逐渐增强.基于此特点,文中提出面向图像检索的深度汉明嵌入哈希编码方式.在深度卷积神经网络的末端插入一层隐藏层,依据每个单元的激活情况获得图像的哈希编码.同时根据哈希编码本身的特征提出汉明嵌入损失,更好地保留原数据之间的相似性.在CIFAR-10、NUS-WIDE基准图像数据集上的实验表明,文中方法可以提升图像检索性能,较好改善短编码下的检索性能. 相似文献
5.
为了解决现有无监督二元哈希方法由于存在较大量化损失而导致检索精度较低的问题,在CIBHash方法的基础上,提出了一种新的基于对比学习的无监督三元哈希方法——CUTHash,将三元哈希编码用于图像检索。具体来说,首先,使用融合了解耦对比损失的对比学习框架,在目标数据集上进行无监督的图像特征学习;接着,为了得到三元哈希编码,对学习到的图像特征使用平滑函数进行量化操作,解决离散函数量化后导致的零梯度问题;最后,应用改进后的对比损失,约束同属一张图像的增强视图的特征在哈希空间中尽可能地接近,从而使得三元哈希编码具有一定的辨识力,使其更好地应用于无监督图像检索任务。在CIFAR-10、NUS-WIDE、MSCOCO以及ImageNet100数据集上进行了大量对比实验,取得了较当前主流的无监督哈希方法更好的检索性能,从而验证了CUTHash方法的有效性。 相似文献
6.
已有的无监督跨模态哈希(UCMH)方法主要关注构造相似矩阵和约束公共表征空间的结构,忽略了2个重要问题:一是它们为不同模态的数据提取独立的表征用以检索,没有考虑不同模态之间的信息互补;二是预提取特征的结构信息不完全适用于跨模态检索任务,可能会造成一些错误信息的迁移。针对第一个问题,提出一种多模态表征融合结构,通过对不同模态的嵌入特征进行融合,从而有效地综合来自不同模态的信息,提高哈希码的表达能力,同时引入跨模态生成机制,解决检索数据模态缺失的问题;针对第二个问题,提出一种相似矩阵动态调整策略,在训练过程中用学到的模态嵌入自适应地逐步优化相似矩阵,减轻预提取特征对原始数据集的偏见,使其更适应跨模态检索,并有效避免过拟合问题。基于常用数据集Flickr25k和NUS-WIDE进行实验,结果表明,通过该方法构建的模型在Flickr25k数据集上3种哈希位长检索的平均精度均值较DGCPN模型分别提高1.43%、1.82%和1.52%,在NUS-WIDE数据集上分别提高3.72%、3.77%和1.99%,验证了所提方法的有效性。 相似文献
7.
郁延珍 《计算机应用与软件》2019,36(11)
由于较低的检索时间和空间复杂度,哈希方法被广泛应用于大规模图像检索领域。提出深度多监督哈希(Deep Multi-Supervised Hashing,DMSH)方法来学习具有高度判别能力和紧凑的哈希编码,并进行有效的图像检索。设计一个新的卷积神经网络结构来产生相似性保留的哈希编码,用一个识别信号来增加类间距离,用一个验证信号来降低类间距离。同时,通过正则化的方式降低网络输出和二进制哈希编码之间的损失并使二进制哈希值在每一维上均匀分布使网络输出更接近离散的哈希值。在两个数据集上的实验证明了该方法能够快速编码任意新的图像并取得先进的检索结果。 相似文献
8.
当前主流的Web图像检索方法仅考虑了视觉特征,没有充分利用Web图像附带的文本信息,并忽略了相关文本中涉及的有价值的语义,从而导致其图像表达能力不强。针对这一问题,提出了一种新的无监督图像哈希方法——基于语义迁移的深度图像哈希(semantic transfer deep visual hashing,STDVH)。该方法首先利用谱聚类挖掘训练文本的语义信息;然后构建深度卷积神经网络将文本语义信息迁移到图像哈希码的学习中;最后在统一框架中训练得到图像的哈希码和哈希函数,在低维汉明空间中完成对大规模Web图像数据的有效检索。通过在Wiki和MIR Flickr这两个公开的Web图像集上进行实验,证明了该方法相比其他先进的哈希算法的优越性。 相似文献
9.
现有的领域自适应方法在匹配分布时并未完全考虑伪标签置信度或伪标签损失计算问题,针对此类问题,提出循环选择伪标签分类模型(CSPL)。利用深度网络提取图像特征,为目标域打上高置信度伪标签使得训练数据增强,采用MMD距离度量方法对齐源域和目标域的概率分布,同时设计伪标签损失同步迭代学习,更新模型作为下一次循环的训练模型直至模型收敛。在常用的领域自适应数据集Office31、Office-Home、ImageCLEF-DA以及Amazon-Review上实验表明,该模型相比之前域适应模型在准确度方面平均提升4%~8%且模型的鲁棒性也明显增加。 相似文献
10.
哈希编码能够节省存储空间、提高检索效率,已引起广泛关注.提出一种成对相似度迁移哈希方法(pairwise similarity transferring hash,PSTH)用于无监督跨模态检索.对于每个模态,PSTH将可靠的模态内成对相似度迁移到汉明空间,使哈希编码继承原始空间的成对相似度,从而学习各模态数据对应的哈希编码;此外,PSTH重建相似度值而不是相似度关系,使得训练过程可以分批进行;与此同时,为缩小不同模态间的语义鸿沟,PSTH最大化模态间成对相似度.在三个公开数据集上进行了大量对比实验,PSTH取得了SOTA的效果. 相似文献
11.
12.
现有基于近邻图的近似最近邻搜索(ANNS)算法通常将数据库中被检索向量组织成近邻图结构,根据用户设定参数搜索查询向量的近似最近邻。为提升基于近邻图的ANNS算法在给定召回率下的搜索效率,提出一种参数自适应方法AdaptNNS。采集数据库中的被检索向量并对采样结果进行聚类,利用聚类中心向量和最近邻分类器提取查询负载特征,同时将查询负载特征与不同的召回率相结合作为输入特征训练梯度提升决策树(GBDT)模型。在查询处理过程中,根据应用程序指定的召回率获取最终输入特征,并通过GBDT模型预测最优搜索参数,提升ANNS算法的吞吐量。在Text-to-Image、DEEP和Turing-ANNS数据集上的实验结果表明,当达到相同的目标召回率时,AdaptNNS方法相比于Baseline方法最多可将DiskANN和HNSW算法的吞吐量提升1.3倍,具有更高的近似最近邻搜索效率。 相似文献