首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
BK-7 glass with high surface quality and thin oxidic films (SiO2, TiO2, Ta2O5) deposited by ion plating (IP) and reactive evaporation (RE) on BK-7 glass have been characterized by means of X-ray reflectivity. The quantities determined with great precision are the film thickness, the film density and the interface roughness. It turned out that the IP films are more dense and smoother than the corresponding RE films. The ion-plated layers have a thin surface layer on top of the oxide which is reduced in density, whereas for the RE films there is an intermediate layer with an enhanced density between the glass substrate and the oxide.  相似文献   

2.
针对单光子探测芯片中超导Nb膜减反的问题,研究了磁控溅射Nb膜折射率光谱特性随Nb膜厚度变化的规律,同时研究了化学气相沉积法制备的SiO2和SiNx介质膜的折射率光谱特性。为降低超导Nb膜对633 nm光的反射比,在Nb膜表面设计和制备了SiO2和SiNx减反膜。测试结果表明:SiO2和SiNx使反射比明显减小,计算结果验证了这一趋势。  相似文献   

3.
G. V Gadiyak   《Thin solid films》1999,350(1-2):147-152
A simple model of thermal dissociation and recovery of hydrogen-passivated silicon defects at the Si/SiO2 interface, such as Pb - centers, during vacuum thermal annealing has been suggested. his model considers reactions of hydrogen with defect states at the Si/SiO2 interface and diffusion of liberated atomic and molecular hydrogen in a silicon dioxide film. The rate constants were calculated in diffusion approximation. A good agreement was obtained between the experimental and numerical simulation results for oxides with different thickness (204–1024 Å), grown, both, (111) and (100) samples and annealed in the temperature range (480–700°C).  相似文献   

4.
IR transmission spectra of phosphosilicate glass (PSG) films with 8 wt.% P prepared by plasma-enhanced chemical vapour deposition (PECVD) and CVD are compared. The differential IR spectrum of a PECVD PSG film differs from that of a CVD PSG film: the P=O peak has a lower intensity than the corresponding peak of the CVD film with the same phosphorus content; no peaks are evident at 980 and 500 cm−1—the characteristic frequencies for P---O---P stretching and bending vibrations. The differential IR spectra of PECVD and CVD PSG films become very similar after annealing for 4 h in water vapour at 850°C. The etch rate of a PECVD film in p-etchant, which is constant throughout the film thickness, is 400 Å min−1. However, the etch rate recorded after the film is subjected to annealing in water vapour at 850°C varies with the depth in the film, attaining values as high as 800 Å min−1 in the region near the outer surface of the film. The results are explained as due to the oxidation of P2O3 to P2O5.  相似文献   

5.
Tungsten (W) films were grown with atomic layer control using a novel sequence of self-limiting surface reactions. The tungsten film growth was achieved by dividing the binary reaction WF6+Si2H6→W+2SiHF3+2H2 into two separate half-reactions. Alternating exposures to WF6 and Si2H6 in an ABAB… sequence produced tungsten deposition at temperatures between 425 and 600 K. The Si2H6 reactant served only a sacrificial role to strip fluorine from tungsten without incorporating into the film. FTIR spectroscopic investigations demonstrated that the WF6 and Si2H6 half-reactions were complete and self-limiting at T>400 K. In situ spectroscopic ellipsometry measurements determined a tungsten growth rate of 2.5 Å/AB cycle with WF6 and Si2H6 reactant exposures sufficient for complete half-reactions. The surface topography of the deposited tungsten films was flat indicating smooth film growth. The tungsten films were either amorphous or composed of very small crystalline grains and contained no measurable silicon or fluorine. These results represent the first demonstration of atomic layer deposition of smooth single-element metal films using sequential surface chemistry.  相似文献   

6.
Mn2+-doped Zn2SiO4 and Mg2Gd8(SiO4)6O2 phosphor films were deposited on silicon and quartz glass substrates by sol–gel process (dip-coating). The variations of sol viscosity with time and film thickness with the number of layers were investigated in Zn2SiO4: Mn system. The results of XRD and IR showed that the Zn2SiO4: Mn films remained amorphous below 700°C and crystallized completely around 1000°C. From AFM studies, it was observed that the grains with 0.5–0.8 μm size packed closely in Zn2SiO4: Mn films, which were uniform and crack free. The luminescence properties of Zn2SiO4: Mn films were characterized by absorption, excitation and emission spectra as well as luminescence decay. These properties were discussed in detail by a comparison with those of Mn2+ (and Pb2+)-doped Mg2Gd8(SiO4)6O2 phosphor films.  相似文献   

7.
Silicon oxide films have been deposited with remote plasma chemical vapour deposition (RPCVD) at low temperatures (<300 °C) from SiH4---N2O. The effect of a gas-phase reaction on the SiO2 film properties and Si/SiO2 interface was investigated. As the partial pressure ratio was increased above N2O/SiH4 = 4, a gas-phase reaction with powder formation was observed, which degraded film properties, increased surface roughness, and decreased deposition rate. When N2O/SiH4 <4, there was no detectable IR absorption in the film associated with hydrogen-related bonds (Si---OH and Si---H) but when N2O/SiH4 >4, the incorporation of Si---OH bond became significant and Si1+, intermediate state silicon at the interface, was more abundant. The oxide fixed charge, interface trap density, surface roughness and leakage current were increased when there was powder formation in the gas phase. High plasma power also favoured the powder formation in the gas phase. C---V and I---V characteristics were measured and it was shown that these electrical properties were directly related to the process condition and material properties of the oxide and the Si/SiO2 interface.  相似文献   

8.
Optical properties of fluorinated silicon oxide (SiOF) films for optical waveguide in optoelectronic devices were investigated. The SiOF films are formed at 25°C by a liquid phase deposition (LPD) technique using a supersaturated hydrofluosilicic acid (H2SiF 6) aqueous solution. Two main absorption peaks corresponding to Si-O and Si-F bonds were observed at the wavenumbers of 1090 and 930 cm-1 in Fourier transform infrared (FTIR) spectrum, respectively. The LPD-SiOF films show very little content of water components such as Si-OH bonds and OH group. Although the transmittance for 600-nm-thick LPD-SiOF film gradually decreased from the wavelength around 700 nm, the relative transmittances to quartz glass are over 98% in the wavelength region from 350-2500 nm. The concentration of fluorine atoms in the LPD-SiOF film was about 5%, and the calculated composition was SiO1.85F0.15. The calculated refractive index from the polarizability for LPD-SiOF film was 1.430, and agrees very well with the measured value at the wavelength of 632.8 nm by ellipsometry. The dispersion of refractive index was evaluated and fitted to a three-term Sellmeier's dispersion equation. The zero dispersion wavelengths for the LPD-SiOF and thermally grown SiO2 films were 1.271 and 1.339 μm, respectively  相似文献   

9.
M. Hacke  H. L. Bay  S. Mantl 《Thin solid films》1996,280(1-2):107-111
Silicon molecular beam epitaxy (Si-MBE) has been used to produce silicon oxide (SiOx) films by evaporating Si on a heated Si(100) substrate in an ultra high vacuum system with an O2 pressure of 10−6 to 10−4 mbar. Then the SiOx films were overgrown with pure Si. The influence of the substrate temperature, the O2 pressure and the Si deposition rate on the oxygen content in the SiOx films and on the crystalline quality of the Si top-layer was investigated by Rutherford backscattering spectrometry and ion channeling. Epitaxial growth of the Si top-layer was observed up to a maximum concentration of ≈20 at.% oxygen content in the SiOx film. Cross-sectional transmission electron microscopy shows that the structure of the SiOx film changes duringa subsequent annealing procedure. Electron energy loss spectrometry proves that amorphous SiO2 is formed and the development of holes indicates that the density of the as-grown SiOx film is much lower than that of SiO2. The specific for the as-grown SiOx films was determined by IV measurements.  相似文献   

10.
Highly conducting and transparent indium tin oxide (ITO) thin films were prepared on SiO2 glass and silicon substrates by pulsed laser ablation (PLA) from a 90 wt.% In2O3-10 wt.% SnO2 sintered ceramic target. The growths of ITO films under different oxygen pressures (PO2) ranging from 1×10−4–5×10−2 Torr at low substrate temperatures (Ts) between room temperature (RT) and 200°C were investigated. The opto-electrical properties of the films were found to be strongly dependent on the PO2 during the film deposition. Under a PO2 of 1×10−2 Torr, ITO films with low resistivity of 5.35×10−4 and 1.75×10−4 Ω cm were obtained at RT (25°C) and 200°C, respectively. The films exhibited high carrier density and reasonably high Hall mobility at the optimal PO2 region of 1×10−2 to 1.5×10−2 Torr. Optical transmittance in excess of 87% in the visible region of the solar spectrum was displayed by the films deposited at Po2≥1×10−2 Torr and it was significantly reduced as the PO2 decreases.  相似文献   

11.
采用溶胶-凝胶法在玻璃表面制备出ZrO2-SiO2薄膜, 然后通过离子交换形成镀膜增强玻璃, 研究了薄膜组成对离子交换增强玻璃的力学和光学性能的影响。利用紫外可见分光光度计、激光椭偏仪、纳米压痕、三点抗弯和能谱(EDX)分析了薄膜结构及性能。结果表明: 所有薄膜均连续均匀, 纯ZrO2薄膜为四方相结构, 含Si薄膜为无定形结构; 薄膜具有较高弹性恢复率(>60%)以及H/E比(>0.1), 有利于强度增强; 随Si含量增加, 可见光透过率增大, 但表面硬度和杨氏模量随之降低; 0.5ZrO2-0.5SiO2薄膜综合性能最佳: 表面硬度为18 GPa, 抗弯强度为393 MPa, 厚度~45 nm时可见光透过率大于85%。  相似文献   

12.
Thin film electro-optic and non-linear optical materials are of interest for applications in high-speed integrated optical devices. Materials of the system Pb1−x/100Lax/100(Zry/100 Ti1−y/100)1−x/400O3 or PLZT x/y/(100−y) are attractive since they can be integrated into Si and GaAs substrates using suitable deposition techniques. In this investigation we examine the structural properties of r.f. magnetron sputter-deposited PLZT using X-ray absorption near-edge spectroscopy (XANES). For XANES analysis, four samples were selected: (1) a highly oriented PLZT 28/0/100 film of ≈ 4500 Å deposited on SiO2; (2) a highly oriented PLZT 28/0/100 film of ≈ 4500 Å deposited on a 2 ωm SiO2 buffer layer over a Si(100) substrate; (3) a highly oriented PLZT 28/0/100 film of ≈4500 Å deposited on Al2O3 (1 02); and (4) a commercial ceramic wafer of PLZT 9/65/35. The XANES experiments were performed at the Stanford Synchrotron Radiation Laboratory (SSRL) using electron yield and fluorescence techniques. Data was taken at the Ti K-edge (4966.4eV) and compared to reference spectra. Of the reference spectra, the Ti K-edge spectra of the PLZT most closely resemble perovskite (SrTiO3). The surface and bulk thin film are similar and all the 28/0/100 spectra resemble the spectra of 9/65/35, indicating similar cubic perovskite structures for these materials.  相似文献   

13.
Spectrally selective Ni-Al2O3 composite films were prepared by r.f. planar magnetron sputtering using hot-pressed targets of two different compositions. The composition of the films were varied by co-sputtering the target with additional nickel pellets distributed uniformly on the target. The composition of the films were analysed by energy-dispersive X-ray analysis. Optical simulations were carried out with the experimentally measured n and k and the published n and k of the metallic substrate. R.f.-sputtered SiO2 and Al2O3 were used as antireflection coatings. From the computer optimization studies we found that = 0.94 and (100°C) = 0.07 could be obtained with 650 Å of Ni-Al2O3 (f = 0.61) antireflected with 780 Å SiO2 on a nickel-coated glass substrate. When molybdenum-coated nickel-plated stainless steel substrates were used, the films were found to be stable up to 500°C in air.  相似文献   

14.
Ba(Ti0.95Zr0.05)O3 (BTZ) thin films grown on Pt/Ti/SiO2/Si(100) substrates were prepared by chemical solution deposition. The structure and surface morphology of BTZ thin films has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). At 100 kHz, the dielectric constant and dissipation factor of the BTZ film are 121 and 0.016, respectively. The ellipsometric spectrum of the BTZ thin film annealed at 730 °C was measured in the range of wavelength from 355 to 1700 nm. Assuming a five-layer model (air/surface roughness layer/BTZ/interface layer/Pt) for the BTZ thin films on platinized silicon substrates, the optical constant spectra (refractive index n and the extinction coefficient k) of the BTZ thin films were obtained.  相似文献   

15.
利用TFCcal设计软件构建膜系结构, 采用溶胶-凝胶工艺和提拉法在超白玻璃上制备出厚度精确可控的宽光谱、高增透型SiO2/TiO2/SiO2-TiO2减反膜, 同时结合甲基三乙氧基硅烷(MTES)改性碱催化的SiO2溶胶, 通过提拉法一次制备出高透过率疏水型薄膜。研究表明, 高增透型三层宽光谱减反膜的理论膜层厚度依次为: 80.9 nm(内层SiO2-TiO2)、125.0 nm(中间层TiO2)、95.5 nm(外层SiO2), 其在400~700 nm可见光范围内平均透过率实际可高达97.03%以上。多层膜经过退火处理后, 膜面的水接触角高达131.5°, 同时陈化两个月以后的多层膜透过率仅下降0.143%, 表明制备的SiO2/TiO2/ SiO2-TiO2多层减反膜具有优良的疏水和耐环境性能。  相似文献   

16.
采用空气辅助干法共混、冷压烧结并车削成膜的方法制备了SiO2填充量为35wt%、厚度为50 μm的聚四氟乙烯(PTFE)基复合薄膜。系统研究了SiO2颗粒粒径对SiO2/PTFE薄膜复合材料的孔洞缺陷和力学性能等的影响,并研究了SiO2在PTFE中的分散情况及分子间相互作用对其性能变化的影响机制。结果表明,随SiO2粒径的逐渐增大,其在PTFE中的分散趋于均匀,同时PTFE能更好地包覆粒子,因此SiO2/PTFE薄膜孔洞缺陷逐渐减少,力学性能逐渐增强;当SiO2的粒径D50为12 μm时,其在PTFE中的分散均匀性最佳,SiO2/PTFE复合薄膜孔洞缺陷最少,具有较好的力学性能,断裂伸长率达19.5%,拉伸强度达9.2 MPa。   相似文献   

17.
Results from the studies of multicomponent CuO:V2O5 bulk material and thermally evaporated thin films of highly conducting bulk composition prepared at different substrate temperatures are thus compared and discussed. The electronic conductivity is enhanced on increase in the substrate temperature Ts and reaches a maximum value of 12.3 × 10−6Ω−1 cm−1 for Ts = 423 K. X-ray photoelectron spectroscopy studies indicate an increase in the reduced states of vanadium and copper ions in going from the bulk glass to the thin film. Dynamic secondary-ion mass spectroscopy studies on thin films over a depth of 3000 Å show a strong dependence of Ts on the Cu-to-V intensity ratio. Even though stoichiometric values for thin films are achievable by varying the Ts, the oxidation states of Cu in these films are predominantly monovalent. The electrical behaviors of these materials and their thin film counterparts are finally being discussed in relation to the surface analysis data.  相似文献   

18.
Epitaxial and polycrystalline barium hexaferrite BaFe12O19 thin films were prepared by metalorganic chemical vapour deposition (MOCVD). Films were grown by a liquid MOCVD technique which aim is to control precisely the precursor vapour pressures. Two kinds of substrates were used: sapphire (001) and silicon thermally oxidized. On Si/SiO2 films are polycrystalline and the magnetization is isotropic. On Al2O3 (001), structural studies reveal the films to be predominantly single phase, well crystallized without annealing procedure and with the c-axis perpendicular to the film plane; epitaxial relationships between the film and the substrate were determined. The magnetic parameters, deduced from vibrating sample magnetometer measurements, show a high dependence of the magnetization with the orientation of the field with respect to the surface of the film.  相似文献   

19.
An all alkoxide based sol–gel route was investigated for preparation of epitaxial La0.5Sr0.5CoO3 (LSCO) films on 100 SrTiO3 (STO) substrates. Films with 20–30 to 80–100 nm thickness were prepared by spin-coating 0.2–0.6 M (metal) solutions on the STO substrates and heat treatment to 800 °C at 2 °C min− 1, 30 min, in air. The films were epitaxial with a cube-on-cube alignment and the LSCO cell was strained to match the STO substrate of 3.905 Å closely; a and b = 3.894 Å and 3.897 Å for the 20–30 and 80–100 nm films, respectively. The c-axis was compressed to 3.789 Å and 3.782 Å for the 20–30 and 80–100 nm films, respectively, which resulted in an almost unchanged cell volume as compared to polycrystalline film and nano-phase powders prepared in the same way. The SEM study showed mainly very smooth, featureless surfaces, but also some defects. A film prepared in the same way on an -Al2O3 substrate was dense and polycrystalline with crystallite sizes in the range 10–50 nm and gave cubic cell dimensions of ac = 3.825 Å. The conductivity of the ca 30–40 nm thick polycrystalline film was 1.7 mΩcm, while the epitaxial 80–100 nm film had a conductivity of around 1.9 mΩcm.  相似文献   

20.
SiO2 films were deposited layer by layer from a new silicon source gas, i.e. tetra-iso-cyanate-silane (Si(NCO)4). An average growth rate of about 0.17 nm per cycle was achieved by a cyclic process of alternating reaction of the substrate surface with Si(NCO)4 and H2O respectively. The detailed deposition characteristics together with chemical and physical properties of the deposited film were evaluated with ellipsometry, Fourier transform IR spectroscopy, X-ray photoelectron spectroscopy and Auger electron spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号