共查询到19条相似文献,搜索用时 46 毫秒
1.
基于项目特征聚类的协同过滤推荐算法 总被引:1,自引:0,他引:1
提出基于项目特征聚类的Item-based协同过滤推荐算法.该算法首先根据项目的属性特征对项目进行聚类,形成其特征相似群,然后采用一种基于预评分的相似性度量方法计算目标项的最近邻居,最终产生推荐.经实验验证该算法可以有效解决用户评分数据稀疏性和冷启动的难题,而且可以显著提高系统推荐质量. 相似文献
2.
推荐系统是个性化服务中最重要的技术之一,协同过滤技术已经成功地应用于个性化推荐系统中。随着用户和商品数目日益增加,推荐系统的效能逐渐降低,实时性要求也难以保证。针对此缺点,本文使用了一种基于模糊聚类的协同过滤推荐,根据用户对项目评分的相似性对项目进行模糊聚类,并在此基础上搜索目标用户的最近邻居,从而缩小最近邻的查找范围并产生推荐结果。实验结果表明,该方法可以有效提高个性化服务中的实时响应速度。 相似文献
3.
推荐系统是电子商务系统中最重要的技术之一.随着电子商务系统用户数目和商品数目的日益增加,在整个商品空间上用户评分数据极端稀疏,传统的相似性度量方法均存在各自的弊端,导致推荐系统的推荐质量急剧下降.针对用户评分数据极端稀疏情况下传统相似性度量方法的不足,提出了一种基于项目评分预测的协同过滤推荐算法,根据项目之间的相似性初步预测用户对未评分项目的评分,在此基础上,采用一种新颖的相似性度量方法计算目标用户的最近邻居.实验结果表明,该算法可以有效地解决用户评分数据极端稀疏情况下传统相似性度量方法存在的问题,显著地提高推荐系统的推荐质量. 相似文献
4.
推荐系统运用统计和知识发现技术在实时交互系统中提供产品推荐,并且已经在电子商务中取得了较广泛的应用。本文中我们介绍了一种不同于以往的推荐产生算法,称之为改进的聚类邻居协同过滤推荐算法,试验表明我们的算法比k-邻近点算法和聚类邻居算法具有更好的效果。 相似文献
5.
提出一种基于谱聚类的协同推荐算法(SCBCF)。首先从用户——项目二分网络的单顶点投影中得到用户之间的相似矩阵,然后对该矩阵应用谱聚类算法,将用户聚成k类,并将得到的聚类结果用于数据平滑和邻居结点的选择,最后基于最近邻居集评分行为,对目标用户产生推荐。在Movie-Lens上的实验结果证明本文方法比传统的协同过滤算法能更好地应用于二分网络的协同推荐。 相似文献
6.
7.
推荐系统通过建立用户和信息产品之间的二元关系,利用用户行为产生的数据挖掘每个用户感兴趣的对象并进行推荐,基于用户的协同过滤是近年来的主流方法,但存在一定局限性:推荐时需要考虑全部用户,而单个用户往往只与少部分用户类似。为了解决这个问题,提出了基于改进Canopy聚类的协同过滤推荐算法,将用户模型数据密度、距离与用户活跃度结合,计算用户数据权值,对用户模型数据进行聚类。由于结合了Canopy的聚类思想,同一用户可以属于不同的类,符合用户可能对多领域感兴趣的情况。最后对每个Canopy中的用户进行相应的推荐,根据聚类结果与用户评分预测用户可能感兴趣的对象。通过在数据集Movie Lens和million songs上与对比算法进行MAE、RMSE、NDGG三个指标的比较,验证了该算法能显著提高推荐系统预测与推荐的准确度。 相似文献
8.
9.
协同过滤技术是目前电子商务推荐系统中最为主要的技术之一,但随着系统规模的日益扩大,它面临着算法可扩展性和数据稀疏性两大挑战。针对上述问题,本文提出了一种基于聚类和协同过滤的组合推荐算法。首先利用聚类对项目进行分类,在用户感兴趣的类里进行推荐计算,有效地解决了算法的可扩展性问题;接着在每一类中使用基于项目的协同过滤对未评价的项目进行预测,把较好的预测值填充到原用户-项集合中,有效地缓解了数据稀疏性问题;最后根据协同过滤推荐在相似项目的范围内计算邻居用户,给出最终的预测评分并产生推荐。实验结果表明,本算法有效地解决了上述两个问题,提高了推荐系统的推荐质量。 相似文献
10.
基于项目属性的用户聚类协同过滤推荐算法 总被引:1,自引:0,他引:1
协同过滤推荐算法是个性化推荐服务系统的关键技术,由于项目空间上用户评分数据的极端稀疏性,传统推荐系统中的用户相似度量算法开销较大并且无法保证项目推荐精度.通过对共同感兴趣的项目属性的相似用户进行聚类,构建了不同项目评价的用户相似性,设计了一种优化的协同过滤推荐算法.实验结果表明,该算法能够有效避免由于数据稀疏性带来的弊端,提高了系统的推荐质量. 相似文献
11.
基于内容预测和项目评分的协同过滤推荐 总被引:8,自引:1,他引:8
文中提出了一种基于内容预测和项目评分的协同过滤推荐算法,根据基于内容的推荐计算出用户对未评分项目的评分,在此基础上采用一种基于项目的协同过滤推荐算法计算项目的相似性,随后作出预测。实验结果表明,该算法可以有效解决用户评分数据极端稀疏的情况,同时运用基于项目的相似性度量方法改善了推荐的精确性,显著提高推荐系统的推荐质量。 相似文献
12.
协同过滤算法在个性化推荐系统中应用广泛,为保证其在用户规模扩大的同时可以保持推荐的高效性和准确性,设计了一种基于PCA降维和二分K-means聚类的协同过滤推荐算法PK-CF。该算法为解决用户-项目评分矩阵极度稀疏造成的相似度计算误差的问题,采用主成分分析法对用户-项目评分矩阵进行降维,去除含信息量少的维度,只保留最能代表用户特征的维度;为解决协同过滤算法在系统规模庞大情况下的相似度计算时耗问题,通过在降维后的低维向量空间上进行二分K-means聚类来减小目标用户最近邻的搜索范围。在MovieLens数据集上对传统协同过滤算法、基于K-means聚类的协同过滤算法及PK-CF算法进行性能测试的结果表明:PK-CF算法不仅能有效地提高推荐结果的准确率与召回率,而且具有较高的时间效率。 相似文献
13.
14.
龚松杰 《计算机工程与科学》2009,31(5)
推荐系统中,随着用户数目和商品数目的日益增加,传统的协同过滤技术在生成推荐时的速度已经成为一种瓶颈。针对此问题,本文提出了一种基于用户模糊聚类的两阶段协同过滤推荐。两阶段分为离线和在线两个阶段。离线时,应用模糊聚类技术,对基本用户进行模糊聚类;在线时,利用已有的用户模糊聚类寻找目标用户的最近邻居,并产生推荐。实验表明,基于用户模糊聚类的两阶段协同过滤推荐不仅加快了推荐生成速度,还提高了推荐质量。 相似文献
15.
针对协同过滤推荐算法中数据极端稀疏所带来的推荐精度低下的问题,文中提出一种基于情景的协同过滤推荐算法。通过引入项目情景相似度的概念,基于项目情景相似度改进了用户之间相似度的计算公式,并将此方法应用至用户离线聚类过程中,最终利用用户聚类矩阵和用户评分数据产生在线推荐。实验结果表明,该算法能够在数据稀疏的情况下定位目标用户的最近邻,一定程度上缓解数据极端稀疏性引起的问题,并减少系统在线推荐的时间。 相似文献
16.
基于聚类分析的电子商务推荐系统 总被引:7,自引:2,他引:7
协同过滤技术可以通过分析客户群共同的消费品味来形成推荐。数据稀缺性问题是协同过滤技术面临的主要挑战。文章利用ROCK聚类算法提出了一种基于协同过滤技术的推荐系统模型,该模型可以有效地解决基于协同推荐的数据稀缺性问题。 相似文献
17.
介绍了协同过滤算法,并对算法进行了改进,解决了用户稀疏的情况下传统算法的不足,同时通过引入评分阈值,显著提高了个性化协同过滤算法的推荐精度。 相似文献
18.
19.
协同过滤推荐算法是目前应用最为成功的一种电子商务推荐方法,但协同过滤算法也存在数据稀疏性和缺乏个性化等问题,这些问题影响了推荐算法的效率和准确性.针对以上问题,提出了引入Web日志分析的方法,同时利用用户聚类等相关技术,不仅解决了数据稀疏的问题也提高了推荐的准确性. 相似文献