首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
防屈曲耗能钢支撑的试验研究   总被引:4,自引:1,他引:3       下载免费PDF全文
结合自行设计的外包钢筋混凝土防屈曲耗能钢支撑的工程应用项目,完成了7个防屈曲耗能钢支撑和3个普通钢支撑的反复单轴受压和反复拉压试验,比较了两种支撑的受力性能差别。试验研究表明,所设计的防屈曲耗能钢支撑,能使核心钢支撑材料的拉、压强度得到充分发挥;核心钢支撑截面屈服前未发生失稳破坏,达到了防屈曲的目的;核心钢支撑与混凝土之间的无粘结构造措施达到预期要求,且在反复拉压受力下的低周疲劳性能满足工程要求。根据试验结果,提出了防屈曲耗能钢支撑的端部构造措施。  相似文献   

2.
A new type of buckling‐restrained braces (BRBs) using mortar‐filled steel tubes with steel lining channels is proposed to reduce the frictional force between the core member and the restraining member. After covering the core plate with the unbonding material, steel lining channels are set on the surface along the longitudinal direction, thus transforming the contact property between the core plate and the restraining member from steel–mortar interface to steel–steel interface. First, comparative cyclic tests are conducted on two new BRBs with steel lining channels and one conventional BRB. All the specimens exhibit stable hysteretic performance without visible global or local instability prior to failure. It is confirmed that the steel lining channels can improve the interface evenness between the core plate and the restraining member, reduce the compression strength adjustment factor, and improve the low‐cycle fatigue behavior and energy dissipation capacity of the BRB. Furthermore, the analytical model for the local stability of the restraining tube is proposed when the core plate buckles about the strong axis, and the corresponding practical design criteria are provided. The influence of various core plate layouts on the local stability of the restraining tube is finally investigated.  相似文献   

3.
The nonlinear response of buildings has attracted a tremendous amount of attention in recent years. Braces, as lateral force‐resisting elements of a structure, are designed to not only react in the elastic region, but also to exhibit nonlinear response beyond the elastic limit. However, buckling in compression drastically degrades the performance of braces under earthquake loading. Buckling restrained braces (BRBs) have been evolved into very effective systems for severe seismic applications. They prevent buckling in compression through the encasing of core steel into a steel tube and confining infill concrete. The effect of infill material is investigated in this research through the use of experimental tests. Filler material may be concrete, grout or mortar, as well as granular material such as compacted aggregate. Moreover, lightweight concrete or lean concrete may be utilized as filler to reduce the overall structural weight. Furthermore, the need for unbonding material may not arise when sand and gravel mixture is used. Nevertheless, the strength of the aggregate should be such that no buckling or strength deterioration is observed. Parametric studies on BRB characteristics are carried out in this research. Results of cyclic loading tests are then provided for individual cases to characterize the effect of response parameters of BRB assemblages. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
One of the key requirements for the desirable mechanical behavior of buckling restrained braces (BRBs) under severe earthquake loading is to prevent global buckling until the brace member reaches sufficient plastic deformation and ductility. This paper presents finite element analysis results of the proposed all-steel buckling restrained braces. The proposed BRBs have identical core sections but different buckling restraining mechanisms (BRMs). The objective of the analysis is to conduct a parametric study of BRBs with different amounts of gap (between the core and the BRM) and initial imperfections to investigate the global buckling behavior of the brace. The results of the analysis showed that BRM flexural stiffness could significantly affect the global buckling behavior of a brace, regardless of the size of the gap. In addition, a minimum ratio of the Euler buckling load of the restraining member to the yield strength of the core, Pe/Py is suggested for design purposes. This ratio is the principal parameter that controls the global buckling of BRBs.  相似文献   

5.
Buckling Restrained Braces (BRBs) are commonly used as bracing elements in seismic zones. A key limit state governing BRB design is to prevent flexural buckling. However, when the wall thickness of the steel tube restrainer is relatively small compared to the cross-section of the core plate, the restraint conditions against the local buckling of the core plate can be critical for the stability and strength of the BRB. In this study, cyclic loading tests and numerical analyses of BRBs were carried out using various tube restrainer configurations to investigate the influence of local buckling of the restrainer on BRB strength and ductility.  相似文献   

6.
防屈曲支撑广泛应用于地震区的支撑构件中,该支撑设计中较为关键的极限状态控制是预防其弯曲屈曲。然而,当钢管的壁厚相对于芯板的横截面尺寸小到一定程度时,芯板局部屈曲的约束条件相对于防屈曲支撑的稳定和强度便显得非常关键了。利用了具有各种不同形状的管状约束对防屈曲支撑进行了往复加载试验和数值分析,以研究这种约束的局部屈曲对防屈曲支撑强度和延性的影响。  相似文献   

7.
为了弥补常规屈曲约束支撑在多遇地震作用下处于弹性状态,不能发挥消能减震作用的不足,提出了一种将金属套管阻尼器与屈曲约束支撑组合形成的双阶屈服屈曲约束支撑,经试验验证其具有良好、稳定的小震及中大震下的滞回特性。在小震作用下,金属套管阻尼器屈服消能,屈曲约束芯板保持弹性承载。借助有限元软件ETABS建立了一系列双阶屈服屈曲约束支撑框架模型,通过改变支撑与框架刚度比、阻尼器与芯板的轴向刚度关系以及套管阻尼器的屈服比例,对各模型进行小震作用下的动力弹塑性分析,将各模型基底剪力和最大层间位移角与相应的常规屈曲约束支撑框架的分析结果进行对比。结果表明:双阶屈服屈曲约束支撑与支撑芯板的轴向弹性刚度比取2左右,阻尼器屈服比例取0.3左右时,可取得较好的减震效果; 双阶屈服屈曲约束支撑的参数取值改变,对降低结构地震响应的影响趋势不因支撑与框架刚度比不同而改变; 当支撑刚度贡献较大时,相较常规屈曲约束支撑,双阶屈服屈曲约束支撑的设置能降低结构的层间位移角,若要同时降低基底剪力,阻尼器屈服比例不宜高于0.3。  相似文献   

8.
为改善墙板内置钢板支撑的延性,避免钢筋混凝土墙板局部冲切破坏,便于检修内置支撑和减小墙板自重,提出了轻质组装墙板。通过对6个组装墙板内置钢板支撑的试验研究,考察了支撑和墙板的厚度、支撑与墙板间的间隙等构造对支撑滞回性能的影响。试验表明,轻质组装墙板内置Q235钢板支撑具有良好的延性和耗能能力。总体上,墙板内置支撑破坏前骨架曲线呈双折线,支撑屈服后因钢材应变硬化以及支撑和墙板间摩擦等因素,支撑的承载力随侧移的增加而增大。达最大侧移角约1/25时,受拉承载力调整系数范围为1.36~1.61。侧移角在1/25以内时,受压承载力调整系数均小于13,支撑的轴向累积非弹性变形能力远大于200,均满足美国ANSI/AISC 341 16的要求。试件最终因内置支撑受拉断裂而破坏,破坏前滞回曲线饱满稳定。组装墙板保持完好,可重复利用。支撑与墙板间留置适宜间隙后,受压支撑在墙板孔壁内仅发生微幅多波弯曲变形,避免了墙板局部破坏。当仅考虑支撑附件的主钢管和开孔钢板简化计算墙板绕钢板支撑弱轴的欧拉临界力,墙板的欧拉临界力与内置支撑的最大轴向受压承载力之比(约束比)达1.15~2.42,墙板内置支撑不发生受压整体失稳。  相似文献   

9.
双管式挫屈束制(屈曲约束)支撑之耐震行为与应用   总被引:35,自引:0,他引:35  
挫屈束制(屈曲约束)支撑一般是由十字型或一字型钢板构成之核心单元加上钢管混凝土构成之束制(约束)单元所组成。由于单核心断面之挫屈束制支撑在与构架接合时每一端需使用八片续接板及两套的螺栓,造成接合部分较长且易发生挫屈(屈曲),为了改善此种挫屈束制支撑与接合,相关研究已发展出以双T型核心配双钢管或双钢板核心配双钢管而组成之双钢管型挫屈束制支撑构件,并已成功地在台大完成一系列之试验,本研究进一步针对大尺寸之单层挫屈束制支撑构架进行试验。研究目的包括:(1)探讨支撑具不同核心长度比例构架之试验与解析行为;(2)研究挫屈束制支撑核心应变与楼层侧位移角之关系;(3)提供含挫屈束制支撑构架之分析与设计建议。由i组V型双钢板双钢管挫屈束制支撑构架之试验显示,支撑核心之极限应变可利用楼层的最大侧位移角需求,以简单的几何关系及支撑核心长度与工作点间长度之比值计算而得,试验结果亦显示,在构架产生最大侧位移角时支撑之核心拉应变会大于相邻支撑之核心压应变,显示两相邻支撑之轴拉力与轴压力在试体巾有互相平衡之趋势,而不会发生最大轴压力显著大于最大轴拉力的现象。  相似文献   

10.
为开发轻质高效的结构耗能阻尼器并将其应用于空间结构振动控制,利用国产铝合金作为防屈曲耗能支撑的核芯材料,并对研制的6个支撑试件进行了拟静力试验。按照稳定理论设计的试件在试验中未发生整体失稳,铝芯板与约束钢管间预留一定间隙并填充锂基润滑脂以消除套箍效应和减小界面摩擦。试验结果显示:支撑在受拉和受压时都能屈服而不屈曲,铝芯板应变强化现象明显,滞回曲线稳定饱满,有较高的耗能能力,其拉压峰值不均匀系数不超过1.3。基于Chaboche钢材循环塑性本构模型,通过试验数据对相关铝材模型参数进行了标定,并将其应用于防屈曲支撑的有限元分析,计算结果与试验曲线吻合良好,相关模型参数能够进一步应用于结构抗震弹塑性分析。  相似文献   

11.
防屈曲耗能钢支撑设计方法的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
介绍了防屈曲耗能钢支撑的研究和应用现状,结合现有文献和本文作者的防屈曲耗能钢支撑试验研究,分析了其受力性能及其影响参数。依据FEMA450的有关规定和我国规范,建议了防屈曲耗能钢支撑设计计算方法,包括:(1)防屈曲耗能钢支撑的布置设计要求;(2)防屈曲耗能钢支撑保证核心钢支撑强度充分发挥的整体稳定性设计条件;(3)外包约束的抗弯及抗裂设计要求,及其外包约束钢筋混凝土和外包约束钢管混凝土的计算方法;(4)根据试验研究结果,建议了无粘结层、端部间隙和节点连接构造的设计要求及构造措施。最后给出了防屈曲耗能钢支撑的设计流程。  相似文献   

12.
Bracing is the one of the best-known means of seismic retrofitting. Buckling restrained brace (BRB) is a certain type of brace with great efficiency against lateral loading. This paper presents the results of a finite element analysis on a BRB in which casing has no concrete infill. The core segment of this brace is similar to the conventional BRB, but it has a different buckling restraining system. The aim of this paper was to perform a parametric seismic study on the effect of a gap and also the effect of friction between the core and the casing and to evaluate the buckling behavior of these braces in response to changes in the initial shape of the bracing system. The results show that the flexural stiffness of the casing system, regardless of size of the gap, can significantly affect the buckling behavior of bracing.  相似文献   

13.
设计5个钢板装配式屈曲约束支撑(Buckling-Restrained Brace, BRB)试件,对其进行低周反复试验,研究无黏结材料、约束比和加载制度等对其力学性能的影响。结果表明:无黏结材料能有效减小外约束单元与核心单元之间的摩擦力,设置无黏结材料的屈曲约束支撑滞回曲线对称、饱满,耗能性能稳定,有较强的抗疲劳能力;设置无黏结材料钢板装配式屈曲约束支撑等效黏滞阻尼比曲线呈现两阶段双线性的特征;约束比小于1的钢板装配式屈曲约束支撑发生整体屈曲失稳;先压后拉和先拉后压的加载方式对屈曲约束支撑滞回性能基本没有影响;基于屈曲约束支撑先于主体结构屈服和不发生因塑性能力不足而提前破坏的设计原则,工程设计中建议屈曲约束支撑延性系数μmax>13,累积塑性变形CPD>1200。  相似文献   

14.
Quasi-static tests for ten pieces of the unbonded steel plate brace encased in reinforced concrete panel, which is referred to as the panel buckling-restrained brace (panel BRB), have been carried out. The effects of some constructional details, such as unbonded material, clearance between the panel and the brace, configuration of the steel bar and the edge reinforcement, effective width of the panel, etc., on the hysteretic behavior of the panel BRBs are examined. The results indicate that the panel BRBs with evener unbonded materials, smaller clearance and additional steel bars and ties along the encased braces exhibit better ductility and energy dissipation capacity than the others. The brace under compression appears to exhibit small amplitude flexural buckling with multiple waves, and its ultimate axial force exceeds its yield load capacity significantly due to strain hardening and frictional action. All specimens of panel BRB exhibit a stable performance under the quasi-static loading until local failure of the panel occurs by either flexure or punching shear. The results also reveal that, with the same construction details mentioned above, the hysteretic behavior of the specimens with the effective width panel almost matches that of the specimens with normal weight concrete panel, however, the former kind of panel BRB would be advantageous in the aseismic performance of the buildings because of its lighter weight.  相似文献   

15.
Three specimens of concrete‐filled steel tubular (CFST) frame‐shear wall structures with a scaling ratio of 1:4 were designed and tested in the present study. Two of them were installed with triple‐steel tube buckling‐resistant braces (BRBs). The seismic performances of the specimens were evaluated by testing them under lateral cyclic loading with constant axially compressive load being applied on the tops of the columns and the shear wall. The structural performances, such as failure characteristics, hysteretic behaviour, skeleton curve, strength degradation, stiffness degradation, energy dissipation capacity and strains at different locations of the three specimens, were measured and analysed in detail. The results showed that the load‐bearing capacity, the deformation capacity and the energy dissipation of the CFST frame‐shear wall structure were significantly improved due to the dissipation capacity of the BRBs, with the strength and stiffness degradation being obviously reduced. The results also showed that the CFST frame‐shear wall structure with BRBs has preferable mechanical behaviour and more reasonable failure mode. It was verified that the BRB can be used to improve the seismic performance of the CFST frame‐shear wall structure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A buckling‐restrained brace (BRB) is a system with excellent earthquake‐proof performance, but it does not dissipate energies caused by the load from weak earthquakes or winds. A hybrid BRB (H‐BRB), which improved the performance of the BRB, is a type of composite damper system consisting of a BRB and a viscoelastic damper. To explain the wind‐induced vibration control performance of H‐BRB, a 40‐story steel building was designed and used as an analysis model in this study, on the basis of the damping ratio from a structural performance test, using normal steel braces, BRB and H‐BRB. In addition, to evaluate the optimal location of H‐BRB, a time‐history analysis of four models was conducted in the study. For such time‐history analysis, wind‐load data in a 10‐year recurrence interval, which were calculated from the wind tunnel test, were used. The result of the time‐history analysis showed that H‐BRB is effective in improving both the lateral stiffness and serviceability of a building using the existing BRB. It also confirmed that it is most effective to position H‐BRBs mainly on the lower stories. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
通过对6个人字形无黏结内藏钢板支撑剪力墙试件的拟静力试验研究,对无黏结材料及支撑与墙板的间隙、墙板内钢筋配置、墙板端部加强构造以及钢板支撑周围有效宽度范围内采用普通混凝土,其余部分采用轻骨料混凝土的有效宽度墙板等因素对试件滞回性能的影响进行考察。试验结果表明,无黏结材料的均匀包裹、支撑与墙板间留有较小的间隙以及沿支撑轴向加密纵横向钢筋和拉结筋等构造措施,可以显著提高墙板局部抗弯和抗冲切承载力,改善试件的延性和耗能能力。支撑受压失稳时呈多波微幅弯曲变形状态,随压力增大,失稳半波数增多,支撑对墙板的局部冲切作用随之增大,使墙板局部弯曲或冲切破坏。直至破坏前,试件滞回曲线饱满稳定,骨架曲线基本呈现两折线的形式。试验还表明,当其他构造相同时,采用有效宽度墙板的试件和整个墙板均由普通混凝土制成的试件的滞回性能几乎相同,但前者自重轻,有利于墙板的安装和结构抗震。  相似文献   

18.
This paper considers the seismic resistance of buckling restrained braces (BRB) in single-layer reticulated domes and their substructures. The method of tracing the full-range dynamic response is used to analyze the seismic response of dome structures with different embedded braces. Based on results relating to critical responses, such as displacement, development of plastic deformation and ultimate load, the effect of BRBs on key design parameters, including core area, yield stress, installing forms etc., is examined. The effect of a dome’s rise-span ratio on the structure is also investigated. It is concluded that BRBs between supporting columns can effectively improve a structure’s seismic performance.  相似文献   

19.
屈曲约束支撑的研究进展及其应用   总被引:6,自引:1,他引:6  
谢强  赵亮 《钢结构》2006,21(1):46-48
屈曲约束支撑在承受拉力和压力的情况下,表现出相同的滞回性能和优良的耗能能力。介绍了近年来发展和应用比较成熟的屈曲约束支撑以及此种支撑形式设计中的几个关键问题。最后,对于近些年来这种支撑在抗震地区的应用进行了回顾。新建高层钢结构的大量应用实例和已有结构的抗震加固的应用表明,此种支撑的使用前景非常广阔。  相似文献   

20.
屈曲约束支撑可以有效地提高装配式钢管混凝土组合框架的抗侧移刚度和耗能减震作用。为研究地震作用下屈曲约束支撑装配式钢管混凝土组合框架的抗震性能和破坏机理,进行两层单跨屈曲约束支撑单边螺栓端板连接钢管混凝土组合框架的水平低周反复荷载试验。考察柱截面类型和端板形式对结构整体抗震性能的影响。记录和研究了此类混合结构的破坏形式和水平荷载-水平位移滞回曲线,分析和评价其骨架曲线、强度和刚度退化规律、延性和耗能等。试验研究表明,在柱截面含钢率相同条件下,抗侧移体系采用屈曲约束支撑,梁柱连接采用单边螺栓端板连接方式,屈曲约束支撑方钢管混凝土组合框架的水平承载力和初始抗侧刚度大于屈曲约束支撑圆钢管混凝土组合框架,但是其延性和耗能能力反之。试验和分析结果表明:屈曲约束支撑装配式钢管混凝土组合框架结构具有良好的抗震性能,较大的可变形能力和耗能能力,可以在多高层建筑结构中应用和推广。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号